These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4394015)

  • 1. Molecular-scale drug entrapment as a precise method of controlled drug release. I. Entrapment of cationic drugs by polymeric flocculation.
    Goodman H; Banker GS
    J Pharm Sci; 1970 Aug; 59(8):1131-7. PubMed ID: 4394015
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular-scale drug entrapment as a precise method of controlled drug release. IV. Entrapment of anionic drugs by polymeric gelation.
    Boylan JC; Banker GS
    J Pharm Sci; 1973 Jul; 62(7):1177-84. PubMed ID: 4714128
    [No Abstract]   [Full Text] [Related]  

  • 3. Drug release from methyl acrylate-methyl methacrylate copolymer matrix. I. Kinetics of release.
    Farhadieh B; Borodkin S; Buddenhagen JD
    J Pharm Sci; 1971 Feb; 60(2):209-12. PubMed ID: 4396713
    [No Abstract]   [Full Text] [Related]  

  • 4. Controlled drug release through polymeric films.
    Fites AL; Banker GS; Smolen VF
    J Pharm Sci; 1970 May; 59(5):610-3. PubMed ID: 5446414
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular scale drug entrapment as a precise method of controlled drug release. 3. In vitro and in vivo studies of drug release.
    Rhodes CT; Wai K; Banker GS
    J Pharm Sci; 1970 Nov; 59(11):1581-4. PubMed ID: 5495482
    [No Abstract]   [Full Text] [Related]  

  • 6. Polysalt flocculates as a physicochemical approach in the development of controlled-release oral pharmaceuticals.
    Salib NN; El-Menshawy ME; Ismail AA
    Pharmazie; 1976; 31(12):872-4. PubMed ID: 1023265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular scale drug entrapment as a precise method of controlled drug release. II. Facilitated drug entrapment to polymeric colloidal dispersions.
    Rhodes CT; Wai K; Banker GS
    J Pharm Sci; 1970 Nov; 59(11):1578-81. PubMed ID: 5495481
    [No Abstract]   [Full Text] [Related]  

  • 8. Aerosol-processed polymeric drug nanoparticles for sustained and triggered drug release.
    Raula J; Eerikäinen H; Peltonen L; Hirvonen J; Kauppinen E
    J Control Release; 2010 Nov; 148(1):e52-3. PubMed ID: 21529623
    [No Abstract]   [Full Text] [Related]  

  • 9. Utilization of hydrophilic gums for the control of drug release from tablet formulations. I. Disintegration and dissolution behavior.
    Huber HE; Dale LB; Christenson GL
    J Pharm Sci; 1966 Sep; 55(9):974-6. PubMed ID: 4380607
    [No Abstract]   [Full Text] [Related]  

  • 10. [Application of aqueous Eudragit dispersions to the preparation of controlled release oral antihistamine dosage forms].
    Dévay A; Rácz I
    Acta Pharm Hung; 1988 Jul; 58(4):166-72. PubMed ID: 2906204
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release.
    Chen H; Gu Y; Hub Y; Qian Z
    PDA J Pharm Sci Technol; 2007; 61(4):303-13. PubMed ID: 17933211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the microencapsulation of nanoparticles on the reduction of burst release.
    Hasan AS; Socha M; Lamprecht A; Ghazouani FE; Sapin A; Hoffman M; Maincent P; Ubrich N
    Int J Pharm; 2007 Nov; 344(1-2):53-61. PubMed ID: 17643878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bead polymerization technique for sustained-release dosage form.
    Khanna SC; Jecklin T; Speiser P
    J Pharm Sci; 1970 May; 59(5):614-8. PubMed ID: 5446415
    [No Abstract]   [Full Text] [Related]  

  • 14. Smart nanoparticles based on pullulan-g-poly(N-isopropylacrylamide) for controlled delivery of indomethacin.
    Constantin M; Bucătariu S; Stoica I; Fundueanu G
    Int J Biol Macromol; 2017 Jan; 94(Pt A):698-708. PubMed ID: 27773840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and properties of multi-responsive semi-IPN hydrogel modified magnetic nanoparticles as drug carrier.
    He F; Zhang Y; Li J; Liu S; Chi Z; Xu J
    J Control Release; 2011 Nov; 152 Suppl 1():e119-21. PubMed ID: 22195792
    [No Abstract]   [Full Text] [Related]  

  • 16. DEVELOPMENT AND EVALUATION OF IVABRADINE HCI-LOADED POLYMERIC MICROSPHERES PREPARED WITH EUDRAGIT L100-55 (METHACRYLIC ACID-ETHYL ACRYLATE COPOLYMER) AND ETHYL CELLULOSE FOR CONTROLLED DRUG RELEASE.
    Majeed A; Ranjha NM; Hanif M; Abbas G; Khan MA
    Acta Pol Pharm; 2017 Mar; 74(2):565-578. PubMed ID: 29624261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically erodible polymer gel for controlled release of drugs.
    Kwon IC; Bae YH; Kim SW
    Nature; 1991 Nov; 354(6351):291-3. PubMed ID: 1956379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of hydrogel modified textile products.
    Hu J
    J Control Release; 2011 Nov; 152 Suppl 1():e31-3. PubMed ID: 22195907
    [No Abstract]   [Full Text] [Related]  

  • 19. Drug release from methyl acrylate-methyl methacrylate copolymer matrix. II. Control of release rate by exposure to acetone vapor.
    Farhadieh B; Borodkin S; Buddenhagen JD
    J Pharm Sci; 1971 Feb; 60(2):212-5. PubMed ID: 4396714
    [No Abstract]   [Full Text] [Related]  

  • 20. pH-Sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms.
    Lecomte F; Siepmann J; Walther M; MacRae RJ; Bodmeier R
    Pharm Res; 2005 Jul; 22(7):1129-41. PubMed ID: 16028014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.