These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 4394015)

  • 21. pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug release.
    Liu YY; Fan XD; Wei BR; Si QF; Chen WX; Sun L
    Int J Pharm; 2006 Feb; 308(1-2):205-9. PubMed ID: 16321489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymeric nanostructures with pH-labile core for controlled drug release.
    Banerjee R; Maiti S; Dey D; Dhara D
    J Colloid Interface Sci; 2016 Jan; 462():176-82. PubMed ID: 26454376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer.
    Kibria G; Islam KM; Jalil RU
    Pak J Pharm Sci; 2009 Jan; 22(1):36-43. PubMed ID: 19168418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices.
    Tatavarti AS; Mehta KA; Augsburger LL; Hoag SW
    J Pharm Sci; 2004 Sep; 93(9):2319-31. PubMed ID: 15295792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formulation and process optimization of multiparticulate pulsatile system delivered by osmotic pressure-activated rupturable membrane.
    Hung SF; Hsieh CM; Chen YC; Lin CM; Ho HO; Sheu MT
    Int J Pharm; 2015 Mar; 480(1-2):15-26. PubMed ID: 25575473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Possibility of influencing drug release from polymers--using the example of bead polymers].
    Mank R; Kala H
    Pharmazie; 1983 Dec; 38(12):860-4. PubMed ID: 6669615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and in vitro dissolution profile of zidovudine loaded microspheres made of Eudragit RS 100, RL 100 and their combinations.
    Nath B; Nath LK; Kumar P
    Acta Pol Pharm; 2011; 68(3):409-15. PubMed ID: 21648196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of burst release from pH-responsive polymeric microparticles.
    Rizi K; Green RJ; Khutoryanskaya O; Donaldson M; Williams AC
    J Pharm Pharmacol; 2011 Sep; 63(9):1141-55. PubMed ID: 21827486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multivariate modeling of encapsulation and release of an ionizable drug from polymer microspheres.
    Labouta HI; el-Khordagui LK; Molokhia AM; Ghaly GM
    J Pharm Sci; 2009 Dec; 98(12):4603-15. PubMed ID: 19645004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of gastroretentive sustained release tablets prepared by combination of melt/sublimation actions of L-menthol and penetration of molten polymers into tablets.
    Fukuda M; Goto A
    Chem Pharm Bull (Tokyo); 2011; 59(10):1221-6. PubMed ID: 21963630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization.
    Sant VP; Smith D; Leroux JC
    J Control Release; 2004 Jun; 97(2):301-12. PubMed ID: 15196757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carboxylated poly(glycerol methacrylate)s for doxorubicin delivery.
    Ma Y; Gao H; Gu W; Yang YW; Wang Y; Fan Y; Wu G; Ma J
    Eur J Pharm Sci; 2012 Jan; 45(1-2):65-72. PubMed ID: 22085680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the tetracycline hydrochloride release from polyacrylate microspheres. Part 1.
    Tsankov S; Lambov N; Minkov E
    Pharmazie; 1992 Feb; 47(2):125-8. PubMed ID: 1635920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-sensitive micelles self-assembled from polymer brush (PAE-
    Huang X; Liao W; Zhang G; Kang S; Zhang CY
    Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and pH-dependent release of domperidone from orally disintegrating tablets.
    Assaf SM; Qandil AM; Al-Ani EA
    Pharm Dev Technol; 2013; 18(4):897-905. PubMed ID: 22304659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems.
    Xiao H; Cezar N
    J Colloid Interface Sci; 2005 Mar; 283(2):406-13. PubMed ID: 15721912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of different polymers and their combinations on the release of metoclopramide HCl from sustained-release hydrophilic matrix tablets.
    Savaşer A; Taş Ç; Bayrak Z; Özkan CK; Özkan Y
    Pharm Dev Technol; 2013; 18(5):1122-30. PubMed ID: 22881478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel hybrid vesicles co-assembled from a cationic lipid and PAAc-g-mPEG with pH-triggered transmembrane channels for controlled drug release.
    Huang YF; Chiang WH; Tsai PL; Chern CS; Chiu HC
    Chem Commun (Camb); 2011 Oct; 47(39):10978-80. PubMed ID: 21909548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acrylic acid polymer and its arrangement on drug release from a wax matrix.
    Emori H; Ishizaka T; Koishi M
    J Pharm Sci; 1984 Jul; 73(7):910-5. PubMed ID: 6470951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymeric hollow spheres assembled from ALG-g-PNIPAM and β-cyclodextrin for controlled drug release.
    Li G; Yu N; Gao Y; Tao Q; Liu X
    Int J Biol Macromol; 2016 Jan; 82():381-6. PubMed ID: 26562555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.