These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 43946)

  • 21. Novel neuropeptide Y receptor antagonists block vasoconstriction in the hamster cheek pouch microcirculation.
    Kim D; Durán WT; Daniels AJ; Durán WN
    Microvasc Res; 1997 Mar; 53(2):167-72. PubMed ID: 9143549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micronization enhances the protective effect of purified flavonoid fraction against postischaemic microvascular injury in the hamster cheek pouch.
    Cyrino FZ; Bottino DA; Lerond L; Bouskela E
    Clin Exp Pharmacol Physiol; 2004 Mar; 31(3):159-62. PubMed ID: 15008958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcirculatory effects of prostacyclin (PGI2) in the hamster cheek pouch.
    Higgs GA; Cardinal DC; Moncada S; Vane JR
    Microvasc Res; 1979 Sep; 18(2):245-54. PubMed ID: 386050
    [No Abstract]   [Full Text] [Related]  

  • 24. Reversal of noradrenaline-induced constriction of hamster cheek pouch arterioles by prostaglandins and their metabolites.
    Westwick J; Lewis GP
    Bibl Anat; 1977; (16 Pt 2):466-8. PubMed ID: 603583
    [No Abstract]   [Full Text] [Related]  

  • 25. Alteration in the reactivity of hamster cheek pouch arterioles to prostaglandin E2 and noradrenaline during pregnancy or sex steroid treatment.
    Orosz M; Csapó I; Varga B
    Prostaglandins; 1983 Aug; 26(2):165-73. PubMed ID: 6580678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of macromolecular permeability by immune-complexes and a beta-adrenoceptor stimulant.
    Adamski SW; Langone JJ; Grega GJ
    Am J Physiol; 1987 Dec; 253(6 Pt 2):H1586-95. PubMed ID: 2447791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of bradykinin induced macromolecular leakage from post-capillary venules by a beta2-adrenoreceptor stimulant, terbutaline.
    Svensjö E; Persson CG; Rutili G
    Acta Physiol Scand; 1977 Dec; 101(4):504-6. PubMed ID: 596228
    [No Abstract]   [Full Text] [Related]  

  • 28. Microcirculatory dynamics of neuropeptide Y.
    Kim D; Durán WR; Kobayashi I; Daniels AJ; Durán WN
    Microvasc Res; 1994 Jul; 48(1):124-34. PubMed ID: 7990718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch.
    Higgs EA; Higgs GA; Moncada S; Vane JR
    Br J Pharmacol; 1978 Jul; 63(3):535-9. PubMed ID: 352466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atrial natriuretic peptide increases microvascular blood flow and macromolecular escape during renin infusion in the hamster.
    Borić MP; Albertini R
    Microcirc Endothelium Lymphatics; 1990 Feb; 6(1):67-88. PubMed ID: 1694007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cigarette smoke extract potentiates bradykinin-induced increases in microvascular permeability.
    Mayhan WG; Rubinstein I
    J Appl Physiol (1985); 1993 Jul; 75(1):27-32. PubMed ID: 8376273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of leukotriene C4 on the cerebral microvasculature.
    Mayhan WG; Sahagun G; Spector R; Heistad DD
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H471-4. PubMed ID: 3740300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that prolonged histamine suffusions produce transient increases in vascular permeability subsequent to the formation of venular macromolecular leakage sites. Proof of the Majno-Palade hypothesis.
    Horan KL; Adamski SW; Ayele W; Langone JJ; Grega GJ
    Am J Pathol; 1986 Jun; 123(3):570-6. PubMed ID: 2424313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indomethacin, (-)-terbutaline (beta 2 agonist), and (+)-terbutaline in acute inflammation induced by repeated ischemia in hamster cheek pouch.
    Nannmark U; Sennerby L; Albrektsson T; Romanus M
    Inflammation; 1985 Jun; 9(2):173-81. PubMed ID: 4007998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nitric oxide and reactive oxygen species in platelet-activating factor-induced microvascular leakage.
    Klabunde RE; Anderson DE
    J Vasc Res; 2002; 39(3):238-45. PubMed ID: 12097822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of high-voltage pulsed current and alternating current on macromolecular leakage in hamster cheek pouch microcirculation.
    Taylor K; Mendel FC; Fish DR; Hard R; Burton HW
    Phys Ther; 1997 Dec; 77(12):1729-40. PubMed ID: 9413451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
    Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E
    Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous fluorescence and electron microscopical detection of bradykinin induced macromolecular leakage.
    Hultström D; Svensjö E
    Bibl Anat; 1977; (15 Pt 1):466-8. PubMed ID: 597194
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of platelet-activating factor on microvascular permselectivity: dose-response relations and pathways of action in the hamster cheek pouch microcirculation.
    Dillon PK; Durán WN
    Circ Res; 1988 Apr; 62(4):732-40. PubMed ID: 2450695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of postischemic increase of leukocyte adhesion and vascular permeability in the hamster by Iloprost.
    Erlansson M; Bergqvist D; Persson NH; Svensjo E
    Prostaglandins; 1991 Feb; 41(2):157-68. PubMed ID: 1708155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.