BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 43948)

  • 1. Intestinal microflora and bile acids. In vitro cholic acid transformation by mixed fecal culture of rats.
    Morotomi M; Kawai Y; Mutai M
    Microbiol Immunol; 1979; 23(9):839-47. PubMed ID: 43948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of transformation of beta-muricholic acid by human microflora implanted in the digestive tracts of germfree male rats.
    Sacquet EC; Gadelle DP; Riottot MJ; Raibaud PM
    Appl Environ Microbiol; 1984 May; 47(5):1167-8. PubMed ID: 6742831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum.
    Macdonald IA; Hutchison DM; Forrest TP
    J Lipid Res; 1981 Mar; 22(3):458-66. PubMed ID: 6940948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria.
    Van Eldere J; Celis P; De Pauw G; Lesaffre E; Eyssen H
    Appl Environ Microbiol; 1996 Feb; 62(2):656-61. PubMed ID: 8593067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal microflora and bile acids. Effect of bile acids on the distribution of microflora and bile acid in the digestive tract of the rat.
    Sakai K; Makino T; Kawai Y; Mutai M
    Microbiol Immunol; 1980; 24(3):187-96. PubMed ID: 6447830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by a Clostridium limosum soil isolate.
    Sutherland JD; Holdeman LV; Williams CN; Macdonald IA
    J Lipid Res; 1984 Oct; 25(10):1084-9. PubMed ID: 6512414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydroxylation of cholic acid at C12 and epimerization at C5 and C7 by Bacteroides species.
    Edenharder R
    J Steroid Biochem; 1984 Oct; 21(4):413-20. PubMed ID: 6492798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on bile salt degradation by mixed fecal cultures.
    Macdonald IA; Singh G; Mahony DE; Meier CE
    Steroids; 1978 Sep; 32(2):245-56. PubMed ID: 31016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of bile acids on intestinal microflora.
    Floch MH; Binder HJ; Filburn B; Gershengoren W
    Am J Clin Nutr; 1972 Dec; 25(12):1418-26. PubMed ID: 4344803
    [No Abstract]   [Full Text] [Related]  

  • 10. Bile acid metabolism by colonic bacteria in continuous culture: effects of starch and pH.
    Christl SU; Bartram HP; Paul A; Kelber E; Scheppach W; Kasper H
    Ann Nutr Metab; 1997; 41(1):45-51. PubMed ID: 9195000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces.
    Fukiya S; Arata M; Kawashima H; Yoshida D; Kaneko M; Minamida K; Watanabe J; Ogura Y; Uchida K; Itoh K; Wada M; Ito S; Yokota A
    FEMS Microbiol Lett; 2009 Apr; 293(2):263-70. PubMed ID: 19243441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria.
    Narushima S; Itoha K; Miyamoto Y; Park SH; Nagata K; Kuruma K; Uchida K
    Lipids; 2006 Sep; 41(9):835-43. PubMed ID: 17152920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile acid transformation by the intestinal flora and cholesterol saturation in bile. Effects of Streptococcus faecium administration.
    Salvioli G; Salati R; Bondi M; Fratalocchi A; Sala BM; Gibertini A
    Digestion; 1982; 23(2):80-8. PubMed ID: 7095315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents.
    Tawthep S; Fukiya S; Lee JY; Hagio M; Ogura Y; Hayashi T; Yokota A
    J Biosci Bioeng; 2017 Nov; 124(5):514-522. PubMed ID: 28751127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bile acid metabolism in cirrhosis. IV. Characterization of the abnormality in deoxycholic acid metabolism.
    Yoshida T; McCormick WC; Swell L; Vlahcevic ZR
    Gastroenterology; 1975 Feb; 68(2):335-41. PubMed ID: 1116679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of hyodeoxycholate from beta-muricholate in gnotobiotic rats associated with Clostridium HDCA-1.
    Eyssen H; De Pauw G; Van Eldere J
    Prog Clin Biol Res; 1985; 181():103-6. PubMed ID: 4022963
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation and characterization of cholic acid 7alpha-dehydroxylating fecal bacteria from cholesterol gallstone patients.
    Wells JE; Berr F; Thomas LA; Dowling RH; Hylemon PB
    J Hepatol; 2000 Jan; 32(1):4-10. PubMed ID: 10673060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of serum cholesterol to in vitro 7alpha-dehydroxylation of primary bile acids by fecal bacteria in infants and children.
    Samuel P; Schussheim A; Lieberman S; Don EC
    Pediatrics; 1974 Aug; 54(2):222-8. PubMed ID: 4847858
    [No Abstract]   [Full Text] [Related]  

  • 19. Unaltered metabolism of taurolithocholic acid with changes in composition of rat intestinal microflora.
    Kelsey MI; Sexton S; Fulk GE; Chung KT
    Appl Environ Microbiol; 1977 Apr; 33(4):1016-8. PubMed ID: 559471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bacteriocholia and cholic acid level in the bile in cholelithiasis].
    Bekbergenov BM; Sergeeva NA; Podachin PV; Gel'fand BR; Filimonov MI
    Antibiot Khimioter; 1990 Jan; 35(1):37-40. PubMed ID: 2110444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.