BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1695 related articles for article (PubMed ID: 4395181)

  • 41. Dietary protein and the control of fatty acid synthesis in rat adipose tissue.
    Jomain M; Hanson RW
    J Lipid Res; 1969 Nov; 10(6):674-80. PubMed ID: 5348126
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Study of the role of nicotinamide coenzymes in the regulation of glyceroneogenesis from pyruvate in rat epididymis fat tissue].
    Velikiĭ NN; Mogilevich SE; Parkhomets PK; Klimenko AP
    Ukr Biokhim Zh (1978); 1982; 54(6):639-46. PubMed ID: 6217612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relative significance of acetate and glucose as precursors for lipid synthesis in liver and adipose tissue from ruminants.
    Hanson RW; Ballard FJ
    Biochem J; 1967 Nov; 105(2):529-36. PubMed ID: 5583995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of lipogenesis in adipose tissue: the significance of the activation of pyruvate dehydrogenase by insulin.
    Taylor SI; Jungas RL
    Arch Biochem Biophys; 1974 Sep; 164(1):12-9. PubMed ID: 4279624
    [No Abstract]   [Full Text] [Related]  

  • 46. Inhibitory effect of 5-hydroxytryptamine on lipogenesis in rat adipose tissues.
    Itaya K
    J Pharm Pharmacol; 1979 Nov; 31(11):773-6. PubMed ID: 41910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on the conversion of pyruvate into fatty acids in white adipose tissue. Effects of insulin, alloxan-diabetes and starvation.
    Halperin ML
    Biochem J; 1971 Sep; 124(3):615-21. PubMed ID: 5135246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart.
    Neely JR; Denton RM; England PJ; Randle PJ
    Biochem J; 1972 Jun; 128(1):147-59. PubMed ID: 5085551
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats.
    Opie LH; Mansford KR; Owen P
    Biochem J; 1971 Sep; 124(3):475-90. PubMed ID: 5135234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Some effects of glucose concentration and anoxia on glycolysis and metabolite concentrations in the perfused liver of fetal guinea pig.
    Faulkner A; Jones CT
    Biochim Biophys Acta; 1978 Jan; 538(1):106-19. PubMed ID: 23174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of dibutyryl cyclic adenosine 3',5'-monophosphate on glucose transport and metabolism in rat adipose tissue.
    Schimmel RJ; Goodman HM
    Biochim Biophys Acta; 1971 Jun; 239(1):9-15. PubMed ID: 4328175
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies on the role of insulin in the regulation of glyceride synthesis in rat epididymal adipose tissue.
    Sooranna SR; Saggerson ED
    Biochem J; 1975 Sep; 150(3):441-51. PubMed ID: 1212201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of vitamin B6 deficiency on liver, kidney, and adipose tissue enzymes associated with carbohydrate and lipid metabolism, and on glucose uptake by rat epididymal adipose tissue.
    Ribaya JD; Gershoff SN
    J Nutr; 1977 Mar; 107(3):443-52. PubMed ID: 139463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes.
    Saggerson ED; McAllister TW; Baht HS
    Biochem J; 1988 May; 251(3):701-9. PubMed ID: 3137922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-Coenzyme A thioesters and citrate.
    Halestrap AP; Denton RM
    Biochem J; 1974 Aug; 142(2):365-77. PubMed ID: 4155293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An analysis of intermediary metabolism and its control in a fat-synthesizing yeast (Candida 107) growing on glucose or alkanes.
    Whitworth DA; Ratledge C
    J Gen Microbiol; 1975 Jun; 88(2):275-88. PubMed ID: 239092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pentose cycle, triose phosphate isomerization, and lipogenesis in rat adipose tissue.
    Katz J; Landau BR; Bartsch GE
    J Biol Chem; 1966 Feb; 241(3):727-40. PubMed ID: 4379536
    [No Abstract]   [Full Text] [Related]  

  • 60. Insulin activation of lipogenesis in isolated mammary acini from lactating rats fed on a high-fat diet. Evidence that acetyl-CoA carboxylase is a site of action.
    Munday MR; Williamson DH
    Biochem J; 1987 Mar; 242(3):905-11. PubMed ID: 2884993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 85.