These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 4395428)
41. Destruction of reduced nicotinamide-adenine dinucleotide phosphate by bromotrichloromethane and by carbon tetrachloride in vitro and in vivo. Slater TF; Jose PJ Biochem J; 1969 Aug; 114(1):7P-8P. PubMed ID: 4390209 [No Abstract] [Full Text] [Related]
42. Cholesterol biosynthesis by rat liver microsomes: concerning C-5 double bond introduction. Reddy VV; Caspi E J Steroid Biochem; 1977 Sep; 8(9):1037-45. PubMed ID: 916675 [No Abstract] [Full Text] [Related]
43. Decreased content of reduced and oxidized nicotinamide-adenine dinucleotide phosphate in rat hepatomas. Ross DA; Jackson RC; Weber G; Morris HP Cancer Biochem Biophys; 1982; 6(2):61-4. PubMed ID: 7151032 [TBL] [Abstract][Full Text] [Related]
44. Cholesterol 7 -hydroxylase in rat liver microsomal preparations. Mitropoulos KA; Balasubramaniam S Biochem J; 1972 Jun; 128(1):1-9. PubMed ID: 4404423 [TBL] [Abstract][Full Text] [Related]
45. Interactions of nicotinamide-adenine dinucleotide phosphate analogues and fragments with pigeon liver malic enzyme. Synergistic effect between the nicotinamide and adenine moieties. Lee HJ; Chang GG Biochem J; 1987 Jul; 245(2):407-14. PubMed ID: 3663167 [TBL] [Abstract][Full Text] [Related]
46. Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro. Zhu W; Dang Z; Qiu J; Liu Y; Lv C; Diao J; Zhou Z Xenobiotica; 2009 Sep; 39(9):649-55. PubMed ID: 19552529 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of enzymatic reduction of steroid double bonds. Björkhem I; Holmberg I Eur J Biochem; 1973 Mar; 33(2):364-7. PubMed ID: 4144356 [No Abstract] [Full Text] [Related]
48. The stereochemistry of hydrogen elimination from C-7 during biosynthesis of ecdysones in insects and plants. Cook IF; Lloyd-Jones JG; Rees HH; Goodwin TW Biochem J; 1973 Sep; 136(1):135-45. PubMed ID: 4772621 [TBL] [Abstract][Full Text] [Related]
49. A paREDOX in the control of cholesterol biosynthesis: Does the NADPH sensor and E3 ubiquitin ligase MARCHF6 protect mammalian cells during oxidative stress by controlling sterol biosynthesis? Fenton NM; Qian L; Paine EG; Sharpe LJ; Brown AJ Bioessays; 2024 Jul; 46(7):e2400073. PubMed ID: 38760877 [TBL] [Abstract][Full Text] [Related]
50. Studies on the enzymatic synthesis of cholesterol: use of a liver acetone powder. Scallen TJ; Schuster MW; Dhar AK; Skrdlant HB Lipids; 1971 Mar; 6(3):162-5. PubMed ID: 4396848 [No Abstract] [Full Text] [Related]
51. Reduction of the 24,25-double bond of lanosterol in vivo in the rat. Stereochemistry of the addition of the C-25 proton in the biosynthesis of cholesterol. Yagen B; O'Grodnick JS; Caspi E; Tamm C J Chem Soc Perkin 1; 1974; 0(16):1994-2000. PubMed ID: 4472279 [No Abstract] [Full Text] [Related]
52. Metabolism of drugs. 78. The formation in vitro of oxoprolintane from prolintane by rabbit liver. Yoshihara S; Yoshimura H Biochem Pharmacol; 1972 Dec; 21(24):3205-11. PubMed ID: 4405366 [No Abstract] [Full Text] [Related]
53. The conversion of 7-dehydrocholesterol into cholesterol. Wilton DC; Akhtar M; Munday KA Biochem J; 1966 Mar; 98(3):29C-31C. PubMed ID: 4380374 [No Abstract] [Full Text] [Related]
54. Epoxides as obligatory intermediates in the metabolism of olefins to glycols. Maynert EW; Foreman RL; Watabe T J Biol Chem; 1970 Oct; 245(20):5234-8. PubMed ID: 4394227 [No Abstract] [Full Text] [Related]
55. Reduced nicotinamide-adenine dinucleotide oxidation by melanin: inhibition by phenothiazines. Van Woert MH Proc Soc Exp Biol Med; 1968 Oct; 129(1):165-71. PubMed ID: 4386810 [No Abstract] [Full Text] [Related]
57. The incorporation of a hydrogen atom at C-15 of cholesterol biosynthesized from squalene. Akhtar M; Rahimtula AD; Wilton DC Biochem J; 1969 Oct; 114(4):801-6. PubMed ID: 5343788 [TBL] [Abstract][Full Text] [Related]
58. Metabolism of rotenone in vitro by tissue homogenates from mammals and insects. Fukami JI; Yamamoto I; Casida JE Science; 1967 Feb; 155(3763):713-6. PubMed ID: 4381128 [TBL] [Abstract][Full Text] [Related]
59. NADPH-dependent cleavage of carbamates. Douch PG; Smith JN; Turner JC Life Sci II; 1971 Dec; 10(23):1327-33. PubMed ID: 4401277 [No Abstract] [Full Text] [Related]
60. Compartmentation of NADPH in rat liver. Kong MS; Landau BR Arch Biochem Biophys; 1977 Apr; 180(1):69-74. PubMed ID: 16569 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]