BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4395508)

  • 1. [Ortho-hydroxylation of aromatic carboxylic acids in higher plants].
    Kindl H
    Hoppe Seylers Z Physiol Chem; 1971 Jan; 352(1):78-84. PubMed ID: 4395508
    [No Abstract]   [Full Text] [Related]  

  • 2. The 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba Desr.
    Gestetner B; Conn EE
    Arch Biochem Biophys; 1974 Aug; 163(2):617-24. PubMed ID: 4153528
    [No Abstract]   [Full Text] [Related]  

  • 3. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450.
    Potts JR; Weklych R; Conn EE; Rowell J
    J Biol Chem; 1974 Aug; 249(16):5019-26. PubMed ID: 4153152
    [No Abstract]   [Full Text] [Related]  

  • 4. Proceedings: Studies on a cinnamic acid hydroxylase from chloroplasts of sweet clover, Melilotus alba desr.
    Gestetner B; Conn EE
    Isr J Med Sci; 1975 Nov; 11(11):1175-6. PubMed ID: 1205745
    [No Abstract]   [Full Text] [Related]  

  • 5. 6-Methylsalicylic acid synthesis by isolated barley chloroplasts.
    Kannangara CG; Henningsen KW; Stumpf PK; von Wettstein D
    Eur J Biochem; 1971 Aug; 21(3):334-8. PubMed ID: 4398213
    [No Abstract]   [Full Text] [Related]  

  • 6. The metabolism of aromatic compounds in higer plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control.
    Russell DW
    J Biol Chem; 1971 Jun; 246(12):3870-8. PubMed ID: 4397825
    [No Abstract]   [Full Text] [Related]  

  • 7. Occurrence of the "NIH shift" in higher plants.
    Sutter A; Grisebach H
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1630-1. PubMed ID: 5745917
    [No Abstract]   [Full Text] [Related]  

  • 8. Lipid dependence of plant microsomal cinnamic acid 4-hydroxylase.
    Büche T; Sandermann H
    Arch Biochem Biophys; 1973 Sep; 158(1):445-7. PubMed ID: 4738087
    [No Abstract]   [Full Text] [Related]  

  • 9. The biosynthesis of coumarin in Melilotus alba.
    Stoker JR
    Biochem Biophys Res Commun; 1964; 14():17-20. PubMed ID: 5836500
    [No Abstract]   [Full Text] [Related]  

  • 10. Cinnamate-4-hydroxylase in Polyporus hispidus.
    Vance CP; Nambudiri AM; Towers GH
    Can J Biochem; 1973 Jun; 51(6):731-4. PubMed ID: 4146154
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam.
    Matsumoto S; Mizutani M; Sakata K; Shimizu B
    Phytochemistry; 2012 Feb; 74():49-57. PubMed ID: 22169019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-carboxy-substituted aromatic amino acids in plant metabolism. 3.
    Larsen PO
    Biochim Biophys Acta; 1967 Jun; 141(1):27-46. PubMed ID: 6051583
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of scopolin in tobacco.
    Steck W
    Can J Biochem; 1967 Jun; 45(6):889-96. PubMed ID: 6034703
    [No Abstract]   [Full Text] [Related]  

  • 14. Ethylene-enhanced formation of cinnamic acid 4-hydroxylase in excised pea epicotyl tissue.
    Hyodo H; Yang SF
    Arch Biochem Biophys; 1971 Mar; 143(1):338-9. PubMed ID: 5561750
    [No Abstract]   [Full Text] [Related]  

  • 15. The biosynthetic pathway from caffeic acid to scopolin in tobacco leaves.
    Steck W
    Can J Biochem; 1967 Dec; 45(12):1995-2003. PubMed ID: 6082583
    [No Abstract]   [Full Text] [Related]  

  • 16. The conversion of L-phenylalanine into benzoic acid on the thylakoid membrane of higher plants.
    Löffelhardt W; Kindl H
    Hoppe Seylers Z Physiol Chem; 1975 May; 356(5):487-93. PubMed ID: 1158329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular site of proline hydroxylation in plant cells.
    Sadava D; Chrispeels MJ
    Biochemistry; 1971 Nov; 10(23):4290-4. PubMed ID: 5126941
    [No Abstract]   [Full Text] [Related]  

  • 18. [Relation between photosynthetic assimilation of CO 2 and phosphorylation of isolated chloroplasts. II. Utilization of ATP in photosynthetic assimilation of CO 2 ].
    Miginiac-Maslow M; Champigny ML
    Biochim Biophys Acta; 1971 Jun; 234(3):344-52. PubMed ID: 5117576
    [No Abstract]   [Full Text] [Related]  

  • 19. [Endogenous photophosphorylation of isolated spinach chloroplasts].
    Miginiac-Maslow M
    Biochim Biophys Acta; 1971 Jun; 234(3):353-9. PubMed ID: 4399018
    [No Abstract]   [Full Text] [Related]  

  • 20. Fat metabolism in higher plants. I. The biosynthesis of polyunsaturated fatty acids by isolated spinach chloroplasts.
    Kannangara CG; Stumpf PK
    Arch Biochem Biophys; 1972 Feb; 148(2):414-24. PubMed ID: 4336347
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.