These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4395557)

  • 21. Physiological color changes in reptiles.
    Hadley ME; Goldman JM
    Am Zool; 1969 May; 9(2):489-504. PubMed ID: 4311991
    [No Abstract]   [Full Text] [Related]  

  • 22. Possible involvement of - and -receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo.
    Brouwer E; van de Veerdonk FC
    Eur J Pharmacol; 1972 Feb; 17(2):234-9. PubMed ID: 4402096
    [No Abstract]   [Full Text] [Related]  

  • 23. In vitro demonstration of adrenergic receptors controlling melanophore responses of the lizard, Anolis carolinensis.
    Goldman JM; Hadley ME
    J Pharmacol Exp Ther; 1969 Mar; 166(1):1-7. PubMed ID: 4388349
    [No Abstract]   [Full Text] [Related]  

  • 24. [Role of cyclic AMP in neuromuscular transmission--with special reference to the effect of catecholamines, xanthines and calcium on myasthenic syndrome].
    Takamori M
    Rinsho Shinkeigaku; 1972 Oct; 12(10):520-8. PubMed ID: 4345472
    [No Abstract]   [Full Text] [Related]  

  • 25. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines.
    Daly JW; Butts-Lamb P; Padgett W
    Cell Mol Neurobiol; 1983 Mar; 3(1):69-80. PubMed ID: 6309393
    [No Abstract]   [Full Text] [Related]  

  • 26. The beta adrenergic receptors of chromatophores of the frog, Rana pipiens.
    Taylor SE; Teague RS
    J Pharmacol Exp Ther; 1976 Oct; 199(1):222-35. PubMed ID: 10425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated nature of chromatophore responses in the in vitro frog skin bioassay.
    Hadley ME; Bagnara JT
    Endocrinology; 1969 Jan; 84(1):69-82. PubMed ID: 5782588
    [No Abstract]   [Full Text] [Related]  

  • 28. Structure-activity relations for caffeine: a comparative study of the inotropic effects of the methylxanthines, imidazoles and related compounds on the frog's heart.
    Chapman RA; Miller DJ
    J Physiol; 1974 Nov; 242(3):615-34. PubMed ID: 4375181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the effects of caffeine and other methylxanthines on [Ca2+]i in rat ventricular myocytes.
    Donoso P; O'Neill SC; Dilly KW; Negretti N; Eisner DA
    Br J Pharmacol; 1994 Feb; 111(2):455-8. PubMed ID: 8004389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action.
    Blinks JR; Olson CB; Jewell BR; Bravený P
    Circ Res; 1972 Apr; 30(4):367-92. PubMed ID: 4401230
    [No Abstract]   [Full Text] [Related]  

  • 31. In vitro response of goldfish (Carassius auratus L.) dermal melanophores to cyclic 3',5'-nucleotides, nucleoside 5'-phosphates and methylxanthines.
    Abramowitz J; Chavin W
    J Cell Physiol; 1974 Oct; 84(2):301-9. PubMed ID: 4373483
    [No Abstract]   [Full Text] [Related]  

  • 32. Inhibitory effects of methylxanthines on the activity of xanthine oxidase.
    Kela U; Vijayvargiya R; Trivedi CP
    Life Sci; 1980 Dec; 27(22):2109-19. PubMed ID: 6894176
    [No Abstract]   [Full Text] [Related]  

  • 33. Mechanism of quasi-morphine withdrawal behaviour induced by methylxanthines.
    Butt NM; Collier HO; Cuthbert NJ; Francis DL; Saeed SA
    Eur J Pharmacol; 1979 Feb; 53(4):375-8. PubMed ID: 217699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells.
    Janitschke D; Lauer AA; Bachmann CM; Seyfried M; Grimm HS; Hartmann T; Grimm MOW
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A contribution to the analysis of the mechanism of MSH-induced dispersion in the melanophores of Xenopus laevis.
    van de Veerdonk FC
    Gen Comp Endocrinol; 1969 Jun; 12(3):658-60. PubMed ID: 5769954
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of methylxanthines on the hypocoagulability induced by chloroform in the dog.
    FIELD JB; GRAF L; LINK KP
    Blood; 1952 Apr; 7(4):445-53. PubMed ID: 14915989
    [No Abstract]   [Full Text] [Related]  

  • 37. Mechanism of potentiation of contractor responses to catecholamines by methylxanthines in aortic strips.
    Kalsner S
    Br J Pharmacol; 1971 Oct; 43(2):379-88. PubMed ID: 5158204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta-adrenergic receptors in human platelets.
    Abdulla YH
    J Atheroscler Res; 1969; 9(2):171-7. PubMed ID: 4306069
    [No Abstract]   [Full Text] [Related]  

  • 39. [Level of nicotinamide coenzymes in the myocardium of rats during the effects of methylxanthines (theophylline, theobromine, caffeine) and catecholamines].
    Frantsuzova SB
    Biull Eksp Biol Med; 1975 Apr; 79(4):68-71. PubMed ID: 106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effect of methylxanthines on glycine-induced Cl current in dissociated rat hippocampal neurons.
    Kawa K; Uneyama H; Akaike N
    Ann N Y Acad Sci; 1993 Dec; 707():449-53. PubMed ID: 9137592
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.