These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4397448)

  • 41. Temperature dependence of ATP hydrolysis and calcium uptake by fragmented sarcoplasmic membranes.
    Inesi G; Watanabe S
    Arch Biochem Biophys; 1967 Sep; 121(3):665-71. PubMed ID: 4229631
    [No Abstract]   [Full Text] [Related]  

  • 42. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of ryanodine on skeletal muscle reticulum calcium adenosine triphosphatase (CaATPase).
    Fairhurst AS
    Biochem Pharmacol; 1973 Nov; 22(22):2815-27. PubMed ID: 4271525
    [No Abstract]   [Full Text] [Related]  

  • 44. [Effect of No-Spa and papaverine on indices of cerebral circulation].
    Lanskiĭ VP
    Farmakol Toksikol; 1973; 36(1):23-6. PubMed ID: 4685149
    [No Abstract]   [Full Text] [Related]  

  • 45. Fluorimetric monitoring of calcium binding to sarcoplasmic reticulum membranes.
    Carvalho CA; Carvalho AP
    Biochim Biophys Acta; 1977 Jul; 468(1):21-30. PubMed ID: 884082
    [No Abstract]   [Full Text] [Related]  

  • 46. Inhibition by ergotamine and ergobasinine of Ca2+ uptake from the sarcotubular system.
    Azzone GF; Milic G; Marcer G; Ottolenghi A
    Biochim Biophys Acta; 1966 Feb; 115(2):513-5. PubMed ID: 4223312
    [No Abstract]   [Full Text] [Related]  

  • 47. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum.
    Hasselbach W
    Ann N Y Acad Sci; 1966 Jul; 137(2):1041-8. PubMed ID: 5229806
    [No Abstract]   [Full Text] [Related]  

  • 48. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites.
    Pease DC; Jenden DJ; Howell JN
    J Cell Physiol; 1965 Apr; 65(2):141-53. PubMed ID: 5835953
    [No Abstract]   [Full Text] [Related]  

  • 49. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Biochemistry; 1980 Jun; 19(13):2912-8. PubMed ID: 7190437
    [No Abstract]   [Full Text] [Related]  

  • 50. The effect of lyophilization and dithiothreitol on vesicles of skeletal and cardiac muscle sarcoplasmic reticulum.
    Sreter F; Ikemoto N; Gergely J
    Biochim Biophys Acta; 1970 Apr; 203(2):354-7. PubMed ID: 4245537
    [No Abstract]   [Full Text] [Related]  

  • 51. Kinetics of calcium transport by fragmented sarcoplasmic reticulum.
    Worsfold M; Peter JB
    J Biol Chem; 1970 Nov; 245(21):5545-52. PubMed ID: 5472356
    [No Abstract]   [Full Text] [Related]  

  • 52. Calcium uptake, calcium release and adenosinetriphosphatase activity in sarcoplasmic reticulum fragments deposited on millipore filters.
    Alonso GL; Arrigó DM; Terradas SE; Nikonov JM; Nespral D; Palomba SE
    Biochim Biophys Acta; 1977 Jul; 468(1):31-50. PubMed ID: 141943
    [No Abstract]   [Full Text] [Related]  

  • 53. The role of ATP and of a bound phosphoryl group acceptor on Ca binding and exchangeability in sarcoplasmic reticulum.
    Carvalho AP; Mota AM
    Arch Biochem Biophys; 1971 Jan; 142(1):201-12. PubMed ID: 4250972
    [No Abstract]   [Full Text] [Related]  

  • 54. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria.
    Harigaya S; Schwartz A
    Circ Res; 1969 Dec; 25(6):781-94. PubMed ID: 5364651
    [No Abstract]   [Full Text] [Related]  

  • 55. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands.
    Immelmann A; Söling HD
    FEBS Lett; 1983 Oct; 162(2):406-10. PubMed ID: 6226538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors affecting the uptake of calcium by canine myocardial sarcoplasmic reticulum.
    Baird TJ; Binnion PF
    Ir J Med Sci; 1969 Dec; 8(12):585-93. PubMed ID: 5374227
    [No Abstract]   [Full Text] [Related]  

  • 57. The enhancement of Ca2+ efflux from sarcoplasmic reticulum vesicles by urea.
    Chini EN; de Faria FO; Cardoso CM; de Meis L
    Arch Biochem Biophys; 1992 Nov; 299(1):73-6. PubMed ID: 1280064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium transport in transverse tubules isolated from rabbit skeletal muscle.
    Hidalgo C; González ME; García AM
    Biochim Biophys Acta; 1986 Jan; 854(2):279-86. PubMed ID: 3080021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the in vitro uptake and release of Ca++ in sarcoplasmic reticulum of rabbit skeletal muscle. Influence of monophasic electrical stimulation of exactly defined strength and of cardiac glycosides.
    Turina M; Jenny E
    Cardiologia (Basel); 1968; 53(4):193-203. PubMed ID: 5753943
    [No Abstract]   [Full Text] [Related]  

  • 60. [On the accumulation of calcium in the sarcoplasmic reticulum of insect muscles].
    Zebe E; Hasselbach W
    Z Naturforsch B; 1966 Dec; 21(12):1248. PubMed ID: 4384225
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.