These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 439870)

  • 1. The metabolism of fatty acids, methyl ketones and secondary alcohols by Penicillium roqueforti in blue cheese slurries.
    King RD; Clegg GH
    J Sci Food Agric; 1979 Feb; 30(2):197-202. PubMed ID: 439870
    [No Abstract]   [Full Text] [Related]  

  • 2. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.
    Cao M; Fonseca LM; Schoenfuss TC; Rankin SA
    J Agric Food Chem; 2014 Jun; 62(25):5726-33. PubMed ID: 24460517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses.
    Caron T; Piver ML; Péron AC; Lieben P; Lavigne R; Brunel S; Roueyre D; Place M; Bonnarme P; Giraud T; Branca A; Landaud S; Chassard C
    Int J Food Microbiol; 2021 Sep; 354():109174. PubMed ID: 34103155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of ketones from fatty acids by spores of Penicillium roqueforti.
    GEHRIG RF; KNIGHT SG
    Nature; 1958 Nov; 182(4644):1237. PubMed ID: 13590289
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of (U-14C)lauric acid to methyl ketones by the spores of Penicillium roqueforti.
    Dartey CK; Kinsella JE
    J Agric Food Chem; 1973; 21(6):933-6. PubMed ID: 4755840
    [No Abstract]   [Full Text] [Related]  

  • 6. Examination of the taxonomic position of Penicillium strains used in blue cheese production based on the partial sequence of β-tubulin.
    Ogawa Y; Hirose D; Akiyama A; Ichinoe M
    Shokuhin Eiseigaku Zasshi; 2014; 55(3):157-61. PubMed ID: 24990763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese.
    Calzada J; Del Olmo A; Picon A; Gaya P; Nuñez M
    J Dairy Sci; 2013; 96(12):7500-10. PubMed ID: 24140328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine Induced Metabolome Alterations of
    Hammerl R; Frank O; Dietz M; Hirschmann J; Hofmann T
    J Agric Food Chem; 2019 Aug; 67(31):8500-8509. PubMed ID: 31298534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of sodium (U- 14 C)palmitate into carbonyl compounds by Penicillium roqueforti spores.
    Dartey CK; Kinsella JE
    J Agric Food Chem; 1973; 21(4):721-6. PubMed ID: 4718943
    [No Abstract]   [Full Text] [Related]  

  • 10. Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses.
    Fernández-Bodega MA; Mauriz E; Gómez A; Martín JF
    Int J Food Microbiol; 2009 Nov; 136(1):18-25. PubMed ID: 19837474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavor.
    Kinsella JE; Hwang DH
    CRC Crit Rev Food Sci Nutr; 1976 Nov; 8(2):191-228. PubMed ID: 21770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative studies on the biogenesis of volatile products of secongary metabolism. II. Studies on molds].
    Kubeczka KH
    Arch Mikrobiol; 1968; 60(2):139-59. PubMed ID: 5699318
    [No Abstract]   [Full Text] [Related]  

  • 13. The oxidation of fatty acids by mycelium of Penicillium roqueforti.
    Lawrence RC; Hawke JC
    J Gen Microbiol; 1968 Apr; 51(2):289-302. PubMed ID: 5652097
    [No Abstract]   [Full Text] [Related]  

  • 14. Fatty acid oxidation by spores of Penicillium roqueforti.
    GEHRIG RF; KNIGHT SG
    Appl Microbiol; 1963 Mar; 11(2):166-70. PubMed ID: 13947000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of mycophenolic acid by Penicillium roqueforti strains.
    Lafont P; Debeaupuis JP; Gaillardin M; Payen J
    Appl Environ Microbiol; 1979 Mar; 37(3):365-8. PubMed ID: 453818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional diversity within the Penicillium roqueforti species.
    Gillot G; Jany JL; Poirier E; Maillard MB; Debaets S; Thierry A; Coton E; Coton M
    Int J Food Microbiol; 2017 Jan; 241():141-150. PubMed ID: 27771579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.
    García-Estrada C; Martín JF
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese.
    Cakmakci S; Gurses M; Hayaloglu AA; Cetin B; Sekerci P; Dagdemir E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(2):245-9. PubMed ID: 25580944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidation of fatty acids by spores of penicillium roqueforti.
    Lawrence RC
    J Gen Microbiol; 1966 Sep; 44(3):393-405. PubMed ID: 5971387
    [No Abstract]   [Full Text] [Related]  

  • 20. Methyl ketone formation during degradation of phenoxybutyric acid by Penicillium canescens SBUG-M 1139.
    Lottmann J; Hammer E; Schauer F
    Arch Microbiol; 1999 Dec; 172(6):417-20. PubMed ID: 10591852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.