These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 439896)

  • 41. Hypertonic cryohemolysis and the cytoskeletal system.
    Green FA; Jung CY; Cuppoletti J; Owens N
    Biochim Biophys Acta; 1981 Nov; 648(2):225-30. PubMed ID: 7306538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-linking of erythrocyte membrane proteins by periodate and intramembrane particle distribution.
    Gahmberg CG; Virtanen I; Wartiovaara J
    Biochem J; 1978 Jun; 171(3):683-6. PubMed ID: 208513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteolytic analysis of the topological arrangement of red cell phosphoproteins.
    Johnson RM; McGowan MW; Morse PD; Dzandu JK
    Biochemistry; 1982 Jul; 21(15):3599-604. PubMed ID: 7052127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex.
    Sheetz MP; Singer SJ
    J Cell Biol; 1977 Jun; 73(3):638-46. PubMed ID: 873993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton.
    Morrow JS; Marchesi VT
    J Cell Biol; 1981 Feb; 88(2):463-8. PubMed ID: 7204503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The oligomeric state of spectrin in the rat erythrocyte membrane skeleton.
    Avery RA; Bettger WJ
    Biochem Cell Biol; 1990 Jun; 68(6):936-43. PubMed ID: 2397097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A third form for the major glycoprotein of the human erythrocyte membrane in sodium dodecyl sulfate: electrophoresis as band PAS-4 at high ionic strength.
    Potempa LA; Garvin JE
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1049-55. PubMed ID: 985509
    [No Abstract]   [Full Text] [Related]  

  • 48. pH-induced denaturation of spectrin changes the interaction of membrane proteins in erythrocyte ghosts. Biochemical and electron microscopic evidence.
    Baumann E; Linss W; Fröhner M; Stoya G; Richter W
    Ann Anat; 1994 Jan; 176(1):93-9. PubMed ID: 8304598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The shape of spectrin molecules from human erythrocyte membranes.
    Shotton D; Burke B; Branton D
    Biochim Biophys Acta; 1978 Sep; 536(1):313-7. PubMed ID: 708771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteolytic digestion of band 3 from bovine erythrocyte membranes in membrane-bound and solubilized states.
    Makino S; Moriyama R; Kitahara T; Koga S
    J Biochem; 1984 Apr; 95(4):1019-29. PubMed ID: 6746585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton.
    Liu SC; Derick LH; Palek J
    J Cell Biol; 1987 Mar; 104(3):527-36. PubMed ID: 2434513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of proteolytically resistant domains of human erythrocyte spectrin.
    Speicher DW; Morrow JS; Knowles WJ; Marchesi VT
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5673-7. PubMed ID: 7003593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactive sulfhydryl groups of the band 3 polypeptide from human erythroycte membranes. Location in the primary structure.
    Rao A; Reithmeier RA
    J Biol Chem; 1979 Jul; 254(13):6144-50. PubMed ID: 447701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A photochemical crosslinking study of the subunit structure of membrane-associated spectrin.
    Middaugh CR; Ji TH
    Eur J Biochem; 1980 Sep; 110(2):587-92. PubMed ID: 7439176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Labelling of erythrocyte spectrin in situ with phenylisothiocyanate.
    Sikorski AF; Kuczek M
    Biochim Biophys Acta; 1985 Oct; 820(1):147-53. PubMed ID: 4052414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solubilisation of human erythrocyte band 4.1 protein in the non-ionic detergent Tween 20.
    Elliott C; Ralston GB
    Biochim Biophys Acta; 1984 Sep; 775(3):313-9. PubMed ID: 6466675
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding.
    Kannan R; Labotka R; Low PS
    J Biol Chem; 1988 Sep; 263(27):13766-73. PubMed ID: 2971044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties and structural role of the subunits of human spectrin.
    Calvert R; Bennett P; Gratzer W
    Eur J Biochem; 1980 Jun; 107(2):355-61. PubMed ID: 7398646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of the high-molecular-weight protein (spectrin) from human-erythrocyte membranes.
    Gratzer WB; Beaven GH
    Eur J Biochem; 1975 Oct; 58(2):403-9. PubMed ID: 241640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radiation-induced structural changes in membrane proteins of human erythrocytes and ghosts and the relation to cellular morphology.
    Schuurhuis GJ; Hommes J; Vos J; Molenaar I; Konings AW
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Feb; 45(2):159-77. PubMed ID: 6607902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.