These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 4399339)

  • 1. Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):334-42. PubMed ID: 4399339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glucose metabolism in Thiobacillus intermedius.
    Matin A; Rittenberg SC
    J Bacteriol; 1970 Oct; 104(1):239-46. PubMed ID: 5473892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes of carbohydrate metabolism in Thiobacillus species.
    Matin A; Rittenberg SC
    J Bacteriol; 1971 Jul; 107(1):179-86. PubMed ID: 5563867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase from the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):343-52. PubMed ID: 4399340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways of carbohydrate metabolism in Microcyclus species.
    Kottel RH; Raj HD
    J Bacteriol; 1973 Jan; 113(1):341-9. PubMed ID: 4688142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):328-33. PubMed ID: 5122808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2.
    Wood AP; Kelly DP; Thurston CF
    Arch Microbiol; 1977 Jun; 113(3):265-74. PubMed ID: 879964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes of intermediary carbohydrate metabolism in the obligate autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus.
    Johnson EJ; Abraham S
    J Bacteriol; 1969 Nov; 100(2):962-8. PubMed ID: 4390965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of oxygen on several enzymes involved in the aerobic and anaerobic utilization of glucose in Escherichia coli.
    Thomas AD; Doelle HW; Westwood AW; Gordon GL
    J Bacteriol; 1972 Dec; 112(3):1099-105. PubMed ID: 4344916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism in Neisseria gonorrhoeae.
    Morse SA; Stein S; Hines J
    J Bacteriol; 1974 Nov; 120(2):702-14. PubMed ID: 4156358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.
    Lessie T; Neidhardt FC
    J Bacteriol; 1967 Apr; 93(4):1337-45. PubMed ID: 4382249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae.
    Julian GS; Bulla LA
    J Bacteriol; 1971 Nov; 108(2):828-34. PubMed ID: 4331499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.
    Gale NL; Beck JV
    J Bacteriol; 1967 Oct; 94(4):1052-9. PubMed ID: 4293079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1971 May; 106(2):456-67. PubMed ID: 4396792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups.
    Martínez-De Drets G; Arias A
    J Bacteriol; 1972 Jan; 109(1):467-70. PubMed ID: 4400417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway of glucose catabolism in Caulobacter crescentus.
    Riley RG; Kolodziej BJ
    Microbios; 1976; 16(65-66):219-26. PubMed ID: 18652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics.
    Guay R; Silver M
    Can J Microbiol; 1975 Mar; 21(3):281-8. PubMed ID: 234784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber.
    Oren A; Mana L
    FEMS Microbiol Lett; 2003 Jun; 223(1):83-7. PubMed ID: 12799004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and catabolism of D-fructose by Spirillum itersomii.
    Hylemon PB; Krieg NR; Phibbs PV
    J Bacteriol; 1974 Jan; 117(1):144-50. PubMed ID: 4808897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus.
    Watson BF; Dworkin M
    J Bacteriol; 1968 Nov; 96(5):1465-73. PubMed ID: 4302296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.