BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4399656)

  • 41. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution.
    Nyrén P; Nore BF; Strid A
    Biochemistry; 1991 Mar; 30(11):2883-7. PubMed ID: 1848779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of Mg2+, phosphate, and pyrophosphate.
    Celis H; Romero I; Gómez-Puyou A
    Arch Biochem Biophys; 1985 Feb; 236(2):766-74. PubMed ID: 2982324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and characterization of inorganic pyrophosphatase from Bacillus stearothermophilus.
    Hachimori A; Takeda A; Kaibuchi M; Ohkawara N; Samejima T
    J Biochem; 1975 Jun; 77(6):1177-83. PubMed ID: 5398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunological studies on function of NADH: quinone oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):523-8. PubMed ID: 4146750
    [No Abstract]   [Full Text] [Related]  

  • 45. Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation.
    Wu JJ; Ma JT; Pan RL
    FEBS Lett; 1991 May; 283(1):57-60. PubMed ID: 1645297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-linked reactions in photosynthetic bacteria. II. The energy-dependent reduction of oxidized nicotinamide-adenine dinucleotide phosphate by reduced nicotinamide-adenine dinucleotide in chromatophores of Rhodospirillum rubrum.
    Keister DL; Yike NJ
    Biochemistry; 1967 Dec; 6(12):3847-57. PubMed ID: 4383839
    [No Abstract]   [Full Text] [Related]  

  • 47. [Properties of a soluble inorganic pyrophosphatase from rat liver cell nuclei].
    Kesselring K; Siebert G
    Hoppe Seylers Z Physiol Chem; 1967 May; 348(5):585-98. PubMed ID: 4297141
    [No Abstract]   [Full Text] [Related]  

  • 48. Kinetics, quantum requirement and action spectrum of light-induced phosphopyridine nucleotide reduction in Rhodospirillum rubrum and Rhodopseudomonas spheroides.
    AMESZ J
    Biochim Biophys Acta; 1963 Jan; 66():22-36. PubMed ID: 14012578
    [No Abstract]   [Full Text] [Related]  

  • 49. Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+- and Mg2+-dependent activities of the F1-ATPase from Rhodospirillum rubrum.
    Strid A; Nyrén P; Baltscheffsky M
    Eur J Biochem; 1988 Sep; 176(2):281-5. PubMed ID: 2901353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence of an essential carboxyl residue in membrane-bound pyrophosphatase of Rhodospirillum rubrum.
    Romero I; Celis H
    J Bioenerg Biomembr; 1992 Dec; 24(6):617-24. PubMed ID: 1334073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane-bound inorganic pyrophosphatase.
    Baltscheffsky M; Nyrén P
    Prog Clin Biol Res; 1984; 164():199-207. PubMed ID: 6151664
    [No Abstract]   [Full Text] [Related]  

  • 52. Interconversion of two kinetically distinct states of the membrane-bound and solubilised H+-translocating ATPase from Rhodospirillum rubrum.
    Webster GD; Edwards PA; Jackson JB
    FEBS Lett; 1977 Apr; 76(1):29-35. PubMed ID: 15868
    [No Abstract]   [Full Text] [Related]  

  • 53. Rhodobacter sphaeroides has a family II pyrophosphatase: comparison with other species of photosynthetic bacteria.
    Celis H; Franco B; Escobedo S; Romero I
    Arch Microbiol; 2003 May; 179(5):368-76. PubMed ID: 12669192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of an adenine-like molecule during activation of dinitrogenase reductase from Rhodospirillum rubrum.
    Ludden PW; Burris RH
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6201-5. PubMed ID: 118462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrolysis of adenosine triphosphate by crystalline yeast pyrophosphatase. Effect of zinc and magnesium ions.
    KUNITZ M
    J Gen Physiol; 1962 Mar; 45(4)Pt 2(4):31-46. PubMed ID: 14460583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Importance of Rhodospirillum rubrum H(+)-pyrophosphatase under low-energy conditions.
    García-Contreras R; Celis H; Romero I
    J Bacteriol; 2004 Oct; 186(19):6651-5. PubMed ID: 15375148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Purification and properties of Pichia guilliermondii yeast alkaline nucleotide pyrophosphatase hydrolyzing flavin adenine dinucleotide].
    Strugovshchikova LP; Tesliar GE; Shavlovskiĭ GM
    Ukr Biokhim Zh (1978); 1981; 53(1):39-45. PubMed ID: 6111146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunochemical studies on function of NADH: hemeprotein oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):515-21. PubMed ID: 4146749
    [No Abstract]   [Full Text] [Related]  

  • 59. ATP synthesis driven by inorganic pyrophosphate in Rhodospirillum rubrum chromatophores.
    Keister DL; Minton NJ
    Biochem Biophys Res Commun; 1971 Mar; 42(5):932-9. PubMed ID: 4324839
    [No Abstract]   [Full Text] [Related]  

  • 60. Tripolyphosphate as a substrate of the inorganic pyrophosphatase from baker's yeast; the role of divalent metal ions.
    Höhne WE; Heitmann P
    Acta Biol Med Ger; 1974; 33(1):1-14. PubMed ID: 4608770
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.