BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4399880)

  • 21. Effect of alpha-tocopherol on lipid peroxide production and hemolysis following mechanical trauma to blood.
    Reitman LW; Char DH; Bernstein EF
    J Surg Res; 1970 Oct; 10(10):471-6. PubMed ID: 5476458
    [No Abstract]   [Full Text] [Related]  

  • 22. Microsomal electron transport reactions. 3. Cooperative interactions between reduced diphosphopyridine nucleotide and reduced triphosphopyridine nucleotide linked reactions.
    Cohen BS; Estabrook RW
    Arch Biochem Biophys; 1971 Mar; 143(1):54-65. PubMed ID: 4397838
    [No Abstract]   [Full Text] [Related]  

  • 23. CCl4-induced damage to endoplasmatic reticulum membranes.
    Archakov AI; Karuzina II
    Biochem Pharmacol; 1973 Sep; 22(17):2095-104. PubMed ID: 4147419
    [No Abstract]   [Full Text] [Related]  

  • 24. [Participation of lipid radicals and active oxygen forms in the peroxidation of microsomal membrane lipids induced by organic hydroperoxides].
    Savov VM; Kagan VE; Prilipko LL
    Vopr Med Khim; 1980; 26(5):623-7. PubMed ID: 7423878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of NADPH-cytochrome c reductase by propyl gallate.
    Torrielli MV; Slater TF
    Biochem Pharmacol; 1971 Aug; 20(8):2027-32. PubMed ID: 4400283
    [No Abstract]   [Full Text] [Related]  

  • 26. Free radical chain oxidation and hemolysis of erythrocytes by molecular oxygen and their inhibition by vitamin E.
    Yamamoto Y; Niki E; Kamiya Y; Miki M; Tamai H; Mino M
    J Nutr Sci Vitaminol (Tokyo); 1986 Oct; 32(5):475-9. PubMed ID: 3559758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of vitamin E deficient red cells to detect a dialyzable hemolytic factor produced by peroxidizing rat liver microsomes.
    Willis RJ; Roders MK; Waller RL; Glende EA; Recknagel RO
    Life Sci; 1979 Mar; 24(12):1075-81. PubMed ID: 36537
    [No Abstract]   [Full Text] [Related]  

  • 28. [Free radical peroxidation of liver mitochondrial and microsomal phospholipids in rat postnatal development].
    Lankin VZ; Tikhaze AK; Kotelevtseva NV; Markelova VI
    Biokhimiia; 1977 Jul; 42(7):1292-7. PubMed ID: 20167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Role of enzymatic phospholipid peroxidation in the mechanism of endoplasmic reticulum membrane uncoupling in vivo].
    Kagan VE; Kotelevtsev SV; Kozlov IuP
    Dokl Akad Nauk SSSR; 1974; 217(1):213-6. PubMed ID: 4152420
    [No Abstract]   [Full Text] [Related]  

  • 30. Singlet oxygen production associated with hydroperoxide induced lipid peroxidation in liver microsomes.
    Auclair C; Lecomte MC
    Biochem Biophys Res Commun; 1978 Dec; 85(3):946-51. PubMed ID: 736967
    [No Abstract]   [Full Text] [Related]  

  • 31. Lysosome disruption by a free radical-like component generated during microsomal NADPH oxidase activity.
    Chen KL; McCay PB
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1412-8. PubMed ID: 4404015
    [No Abstract]   [Full Text] [Related]  

  • 32. Microsomal electron transport reactions. I. Interaction of reduced triphosphopyridine nucleotide during the oxidative demethylation of aminopyrine and cytochrome b 5 reduction.
    Cohen BS; Estabrook RW
    Arch Biochem Biophys; 1971 Mar; 143(1):37-45. PubMed ID: 4397836
    [No Abstract]   [Full Text] [Related]  

  • 33. Metabolism of carbon tetrachloride in hepatic microsomes and reconstituted monooxygenase systems and its relationship to lipid peroxidation.
    Wolf CR; Harrelson WG; Nastainczyk WM; Philpot RM; Kalyanaraman B; Mason RP
    Mol Pharmacol; 1980 Nov; 18(3):553-8. PubMed ID: 7464817
    [No Abstract]   [Full Text] [Related]  

  • 34. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450.
    Correia MA; Mannering GJ
    Mol Pharmacol; 1973 Jul; 9(4):470-85. PubMed ID: 4146890
    [No Abstract]   [Full Text] [Related]  

  • 35. Effects of irradiation on sub-cellular components. I. Lipid peroxide formation in the endoplasmic reticulum.
    Wills ED
    Int J Radiat Biol Relat Stud Phys Chem Med; 1970; 17(3):217-28. PubMed ID: 4393130
    [No Abstract]   [Full Text] [Related]  

  • 36. A possible mechanism for the peroxidation of lipids due to chronic ethanol ingestion.
    Reitz RC
    Biochim Biophys Acta; 1975 Feb; 380(2):145-54. PubMed ID: 235321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [NADPH- and NADH-dependent benz(a)pyrene hydroxylating system. II. Relationship to lipid peroxidation].
    Belevich NP; Dmitriev LF; Ivanov II
    Biull Eksp Biol Med; 1981 Feb; 91(2):158-60. PubMed ID: 7225548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microsomal electron transport reactions. II. The use of reduced triphosphopyridine nucleotide and-or reduced diphosphopyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates.
    Cohen BS; Estabrook RW
    Arch Biochem Biophys; 1971 Mar; 143(1):46-53. PubMed ID: 4397837
    [No Abstract]   [Full Text] [Related]  

  • 39. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. II. Role in microsomal oxidation of ethanol.
    Winston GW; Cederbaum AI
    J Biol Chem; 1983 Feb; 258(3):1514-9. PubMed ID: 6296102
    [No Abstract]   [Full Text] [Related]  

  • 40. The stimulatory effects of carbon tetrachloride on peroxidative reactions in rat liver fractions in vitro. Inhibitory effects of free-radical scavengers and other agents.
    Slater TF; Sawyer BC
    Biochem J; 1971 Aug; 123(5):823-8. PubMed ID: 5001363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.