These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 4399899)
1. Role of phospholipid in electron transfer in a reconstituted liver microsomal enzyme system containing cytochrome P-450. Coon MJ; Autor AP; Strobel HW Chem Biol Interact; 1971 Aug; 3(4):248-50. PubMed ID: 4399899 [No Abstract] [Full Text] [Related]
2. Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene. Lu AY; Levin W; Selander H; Jerina DM Biochem Biophys Res Commun; 1974 Dec; 61(4):1348-55. PubMed ID: 4156173 [No Abstract] [Full Text] [Related]
3. Role of phospholipid in the reconstituted liver microsomal mixed function oxidase system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. Autor AP; Kaschnitz RM; Heidema JK; Van der Hoeven TA; Duppel W; Coon MJ Drug Metab Dispos; 1973; 1(1):156-61. PubMed ID: 4149377 [No Abstract] [Full Text] [Related]
4. Mechanistic studies with purified components of the liver microsomal hydroxylation system: spectral intermediates in reaction of cytochrome P-450 with peroxy compounds. Coon MJ; Blake RC; Oprian DD; Ballou DP Acta Biol Med Ger; 1979; 38(2-3):449-58. PubMed ID: 42250 [TBL] [Abstract][Full Text] [Related]
5. Sedimentation and other properties of the reconstituted liver microsomal mixed-function oxidase system containing cytochrome P-450, reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, and phosphatidylcholine. Autor AP; Kaschnitz RM; Heidema JK; Coon MJ Mol Pharmacol; 1973 Jan; 9(1):93-104. PubMed ID: 4405520 [No Abstract] [Full Text] [Related]
6. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system. West SB; Levin W; Ryan D; Vore M; Lu AY Biochem Biophys Res Commun; 1974 May; 58(2):516-522. PubMed ID: 4366168 [No Abstract] [Full Text] [Related]
7. Electron transfer in the membranes of endoplasmic reticulum. Participation of cytochrome b5 in the NADPH oxidation reaction. The evidence for two cytochromes b5 in liver microsomes. Archakov AI; Devichensky VM; Karjakin AV Arch Biochem Biophys; 1975 Jan; 166(1):295-307. PubMed ID: 235892 [No Abstract] [Full Text] [Related]
8. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver. Ohta Y; Ishiguro I; Naito J; Shinohara R J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802 [TBL] [Abstract][Full Text] [Related]
9. Influences of substrates of different microsomal electron transfer pathways on the oxidation-reduction kinetics of microsomal cytochrome b5. Jansson I; Schenkman JB Arch Biochem Biophys; 1978 Jan; 185(1):251-61. PubMed ID: 23728 [No Abstract] [Full Text] [Related]
10. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450. Strobel HW; Coon MJ J Biol Chem; 1971 Dec; 246(24):7826-9. PubMed ID: 4400080 [No Abstract] [Full Text] [Related]
11. Cytochrome b5 as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles. Ingelman-Sundberg M; Johansson I Biochem Biophys Res Commun; 1980 Nov; 97(2):582-6. PubMed ID: 6781498 [No Abstract] [Full Text] [Related]
12. Electron transfer between liver microsomal cytochrome b5 and cytochrome P-450 in the azo reductase reaction. Fujita S; Peisach J Biochem Biophys Res Commun; 1977 Sep; 78(1):328-35. PubMed ID: 907682 [No Abstract] [Full Text] [Related]
13. Liver microsomal electron transport systems. Properties of a reconstituted, NADH-mediated benzo[a]pyrene hydroxylation system. West SB; Lu AY Arch Biochem Biophys; 1977 Aug; 182(2):369-78. PubMed ID: 197888 [No Abstract] [Full Text] [Related]
14. [Transfer of proteins of NADH and NADPH-specific redox chains between microsomal membranes and phospholipid liposomes]. Al'terman MA; Archakov AI; Vasilenko IA; Devichenskii VM; Kariakin AV Dokl Akad Nauk SSSR; 1979; 248(4):991-3. PubMed ID: 41693 [No Abstract] [Full Text] [Related]
15. Indirect correlation between hydroxylation activities and oxidation-reduction of cytochrome P-450. Ichikawa Y; Yamano T J Biochem; 1972 Jun; 71(6):1053-63. PubMed ID: 4403773 [No Abstract] [Full Text] [Related]
16. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system. Lu AY; Levin W; West SB; Vore M; Ryan D; Kuntzman R; Conney AH Adv Exp Med Biol; 1975; 58(00):447-66. PubMed ID: 239545 [No Abstract] [Full Text] [Related]
17. Functional components of the liver microsomal enzyme system catalysing fatty acid, hydrocarbon and drug hydroxylation. Coon MJ; Strobel HW; Autor AP; Heidema J; Duppel W Biochem J; 1971 Nov; 125(2):2P-3P. PubMed ID: 5144730 [No Abstract] [Full Text] [Related]
18. A comparison of some effects of dimethyl sulphoxide and dimethyl sulphone on rat liver microsomal enzymes. Stock BH; Fouts JR Biochem Pharmacol; 1971 Jul; 20(7):1525-36. PubMed ID: 4399524 [No Abstract] [Full Text] [Related]
19. Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. Tang C; Shou M; Mei Q; Rushmore TH; Rodrigues AD J Pharmacol Exp Ther; 2000 May; 293(2):453-9. PubMed ID: 10773015 [TBL] [Abstract][Full Text] [Related]
20. The role of oxygenated cytochrome P-450 and of cytochrome b5 in hepatic microsomal drug oxidations. Baron J; Hildebrandt AG; Peterson JA; Estabrook RW Drug Metab Dispos; 1973; 1(1):129-38. PubMed ID: 4149374 [No Abstract] [Full Text] [Related] [Next] [New Search]