These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4400295)

  • 1. Glutamic acid as a precursor to N-terminal pyroglutamic acid in mouse plasmacytoma protein (protein synthesis-initiation-immunoglobulins-pyrrolidone carboxylic acid).
    Twardzik DR; Peterkofsky A
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):274-7. PubMed ID: 4400295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer ribonucleic acids from mouse plasmacytoma tumors producing kappa and immunoglobulin chains.
    Bridges KR; Jones GH
    Biochemistry; 1973 Mar; 12(6):1208-12. PubMed ID: 4569775
    [No Abstract]   [Full Text] [Related]  

  • 3. Glutamine as a precursor to N-terminal pyrrolid-2-one-5-carboxylic acid in mouse immunoglobulin lambda-type light chains. Amino acid-sequence variability at the N-terminal extra piece of lambda-type light-chain precursors.
    Burstein Y; Schechter I
    Biochem J; 1977 Aug; 165(2):347-54. PubMed ID: 411485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation by methionine of mouse immunoglobulin light chain containing NH-2terminal pyroglutamic acid.
    Prasad C; Peterkofsky A
    J Biol Chem; 1975 Jan; 250(1):171-4. PubMed ID: 806584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free synthesis of amino-terminal L-pyroglutamic acid.
    Jones GH
    Biochemistry; 1974 Feb; 13(5):855-60. PubMed ID: 4813368
    [No Abstract]   [Full Text] [Related]  

  • 6. Stability of chromatographic patterns of aminoacyl transfer ribonucleic acid from individual mouse plasmacytomas and variability among different immunoglobulin A producing plasmacytomas and normal organs.
    Mushinski JF
    Biochemistry; 1971 Oct; 10(21):3917-24. PubMed ID: 5168564
    [No Abstract]   [Full Text] [Related]  

  • 7. The formation of pyrrolid-2-one-5-carboxylic acid at the N-terminus of immunoglobulin G heavy chain.
    Stott DI; Munro AJ
    Biochem J; 1972 Aug; 128(5):1221-7. PubMed ID: 4674626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essentiality of decyclization of pyrrolidonecarboxylic acid prior to utilization in protein biosynthesis.
    Rush EA; McLaughlin CL; Solomon A
    Cancer Res; 1971 Aug; 31(8):1134-9. PubMed ID: 5095978
    [No Abstract]   [Full Text] [Related]  

  • 9. Conversion of glutamic acid to glutamine by retinal glutamine synthetase.
    Reif-Lehrer L; Coghlin J
    Exp Eye Res; 1973 Nov; 17(4):321-8. PubMed ID: 4148780
    [No Abstract]   [Full Text] [Related]  

  • 10. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.
    Burstein Y; Kantour F; Schechter I
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2604-8. PubMed ID: 822420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The indirect incorporation of pyrrolidone carboxylic acid into transfer ribonucleic acid.
    Rush EA; Starr JL
    Biochim Biophys Acta; 1970 Jan; 199(1):41-55. PubMed ID: 5413484
    [No Abstract]   [Full Text] [Related]  

  • 12. Reactions of free and tRNA bound glutamate and glutamine.
    Murthy MR; Roux H
    J Neurochem; 1974 Oct; 23(4):645-9. PubMed ID: 4430910
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in glutamic acid and glutamine metabolism in the rat brain after whole body X-irradiation.
    Hăulică A; Trandafirescu M; Ababei L
    J Neurochem; 1971 Dec; 18(12):2447-50. PubMed ID: 4400155
    [No Abstract]   [Full Text] [Related]  

  • 14. Chemical identification of specific immunoglobulins as the product of a cell-free system from plasmocytoma tumors.
    Mach B; Koblet H; Gros D
    Proc Natl Acad Sci U S A; 1968 Feb; 59(2):445-52. PubMed ID: 4171434
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucocorticoid regulation of splanchnic glutamine, alanine, glutamate, ammonia, and glutathione fluxes.
    Tamarappoo BK; Nam M; Kilberg MS; Welbourne TC
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E526-33. PubMed ID: 8097375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glutamine synthetase and glutaminase activities in cultured skeletal muscle cells.
    Smith RJ; Larson S; Stred SE; Durschlag RP
    J Cell Physiol; 1984 Aug; 120(2):197-203. PubMed ID: 6146632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.
    Chelius D; Jing K; Lueras A; Rehder DS; Dillon TM; Vizel A; Rajan RS; Li T; Treuheit MJ; Bondarenko PV
    Anal Chem; 2006 Apr; 78(7):2370-6. PubMed ID: 16579622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine 3':5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli.
    Prusiner S; Miller RE; Valentine RC
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2922-6. PubMed ID: 4404145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and function of glutamine synthetase and glutaminase.
    Svenneby G; Torgner IA
    Biochem Soc Trans; 1987 Apr; 15(2):213-5. PubMed ID: 2884149
    [No Abstract]   [Full Text] [Related]  

  • 20. Glutamic acid metabolism in rat retina during postnatal growth.
    Macaione S; Cacioppo F
    Ital J Biochem; 1971; 20(3):112-23. PubMed ID: 4400450
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.