These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4401045)

  • 1. Quinones and nicotinamide nucleotides associated with electron transfer.
    Kröger A; Klingenberg M
    Vitam Horm; 1970; 28():533-74. PubMed ID: 4401045
    [No Abstract]   [Full Text] [Related]  

  • 2. COENZYME Q (UBIQUINONE).
    HATEFI Y
    Adv Enzymol Relat Subj Biochem; 1963; 25():275-328. PubMed ID: 14149679
    [No Abstract]   [Full Text] [Related]  

  • 3. Resolution and reconstitution of the mitochondrial electron transport system. 3. Order of reconstitution and requirement for a new factor for respiration.
    Nishibayashi-Syamashita H; Cunningham C; Racker E
    J Biol Chem; 1972 Feb; 247(3):698-704. PubMed ID: 4333509
    [No Abstract]   [Full Text] [Related]  

  • 4. The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone).
    Szarkowska L
    Arch Biochem Biophys; 1966 Mar; 113(3):519-25. PubMed ID: 4287664
    [No Abstract]   [Full Text] [Related]  

  • 5. ON THE PRESENCE OF MITOCHONDRIAL-TYPE OXIDATIVE ENZYMES IN THE MICROSOMAL FRACTION OF RAT LIVER.
    KURUP CK; RAMASARMA T
    Biochim Biophys Acta; 1965 Mar; 96():518-21. PubMed ID: 14314388
    [No Abstract]   [Full Text] [Related]  

  • 6. Organic structural specificity and sites of coenzyme Q in succinoxidase and DPNH-oxidase systems.
    Lenaz G; Daves GD; Kfolkers K
    Arch Biochem Biophys; 1968 Mar; 123(3):539-50. PubMed ID: 4297040
    [No Abstract]   [Full Text] [Related]  

  • 7. [Function of ubiquinone and molecular organization of the respiratory chain].
    Kröger A
    Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):685-6. PubMed ID: 5069257
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron transport in phosphorylating mitochondria from Tetrahymena pyriformis strain ST.
    Turner G; Lloyd D; Chance B
    J Gen Microbiol; 1971 Mar; 65(3):359-74. PubMed ID: 4326637
    [No Abstract]   [Full Text] [Related]  

  • 11. RECENT ADVANCES IN ELECTRON TRANSFER AND OXIDATIVE PHOSPHORYLATION.
    HATEFI Y
    Clin Chem; 1965 Feb; 11():SUPPL:198-212. PubMed ID: 14256872
    [No Abstract]   [Full Text] [Related]  

  • 12. One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes.
    Iyanagi T; Yamazaki I
    Biochim Biophys Acta; 1969 Apr; 172(3):370-81. PubMed ID: 4388705
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibitors and activators of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase.
    Hatefi Y; Stempel KE; Hanstein WG
    J Biol Chem; 1969 May; 244(9):2358-65. PubMed ID: 4306510
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b.
    Ernster L; Lee IY; Norling B; Persson B
    Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidative phosphorylation in Micrococcus denitrificans. IV. Further characterization of electron-transfer pathway and phosphorylation activity in NADH oxidation.
    Imai K; Asano A; Sato R
    J Biochem; 1968 Feb; 63(2):207-18. PubMed ID: 4299376
    [No Abstract]   [Full Text] [Related]  

  • 18. Four quinone reduction sites in the NADH dehydrogenase complex.
    Ruzicka FJ; Crane FL
    Biochem Biophys Res Commun; 1970 Jan; 38(2):249-54. PubMed ID: 4313928
    [No Abstract]   [Full Text] [Related]  

  • 19. ACTION MECHANISM OF THE OLD YELLOW ENZYME.
    NAKAMURA T; YOSHIMURA J; OGURA Y
    J Biochem; 1965 Apr; 57():554-64. PubMed ID: 14318085
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the mechanism of inhibitionof the mitochondrial electron transport by antimycin. II. Antimycin as an allosteric inhibitor.
    Bryla J; Kaniuga Z; Slater EC
    Biochim Biophys Acta; 1969; 189(3):317-26. PubMed ID: 4312199
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.