These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 4401375)

  • 1. The effect of phenobarbitone on the production of type I hydrogen from reduced nicotinamide-adenine phosphate in different regions of the liver lobule.
    Butcher RG
    Biochem J; 1971 Nov; 125(2):22P-23P. PubMed ID: 4401375
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective increases in type I hydrogen from reduced nicotinamide-adenine dinucleotide phosphate in liver from phenobarbitone-treated rats.
    Altman FP
    Biochem J; 1971 Nov; 125(2):21P-22P. PubMed ID: 4401374
    [No Abstract]   [Full Text] [Related]  

  • 3. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for two types of hydrogen atom in reduced nicotinamide-adenine dinucleotide phosphate arising from glucose 6-phosphate oxidation, based on the inhibitory action of certain steroids.
    Altmann FP; Chayen J
    Biochem J; 1970 Jun; 118(2):6P-7P. PubMed ID: 4394950
    [No Abstract]   [Full Text] [Related]  

  • 5. Reducing equivalents for mixed function oxidation in periportal and pericentral regions of the liver lobule in perfused livers from normal and phenobarbital-treated rats.
    Belinsky SA; Kauffman FC; Thurman RG
    Mol Pharmacol; 1984 Nov; 26(3):574-81. PubMed ID: 6333582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of reduced nicotinamide-adenine dinucleotide phosphate on cytoplasmic-mitochondrial interactions.
    Butcher RG; Chayen J
    Biochem J; 1970 Jun; 118(2):7P. PubMed ID: 4394951
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of dietary lipid and phenobarbitone on the production and utilization of NADPH in the liver. A combined biochemical and quantitative cytochemical study.
    Smith MT; Wills ED
    Biochem J; 1981 Dec; 200(3):691-9. PubMed ID: 7342977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Metabolism of 6-phosphorylglucose in rats treated with phenobarbital].
    Pélissier MA; Manchon P; Collomb MH; Albrecht R
    C R Seances Soc Biol Fil; 1973; 167(11):1558-61. PubMed ID: 4371913
    [No Abstract]   [Full Text] [Related]  

  • 9. Possible mechanism of liver necrosis caused by aromatic organic compounds.
    Brodie BB; Reid WD; Cho AK; Sipes G; Krishna G; Gillette JR
    Proc Natl Acad Sci U S A; 1971 Jan; 68(1):160-4. PubMed ID: 4395686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medroxyprogesterone acetate and phenobarbital induce NADPH producing enzyme activities in rats with a chemical liver injury.
    Stengård JH; Saarni HU; Stenbäck F; Keinänen K; Kärki NT; Sotaniemi EA
    Res Commun Chem Pathol Pharmacol; 1985 Oct; 50(1):93-102. PubMed ID: 3001883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Negative cooperativity of 6-phosphogluconate dehydrogenase in rat liver].
    Voĭnova NE; Chesnokova LS; Lyzlova SN
    Biokhimiia; 1996 Mar; 61(3):451-4. PubMed ID: 8724602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetic characteristics of 6-phosphogluconate dehydrogenase from bull adrenal cortex].
    Senkevich SB; Martynchik DI; Vinogradov VV
    Ukr Biokhim Zh (1978); 1989; 61(5):92-5. PubMed ID: 2588353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Monooxygenase activity and nicotinamide nucleotide systems in perfused rat liver.
    Sies H
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):376. PubMed ID: 3044
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of initial rates of cortisol 2-alpha- and 6-beta-hydroxylation by hepatic microsomal preparations in guinea pigs: effect of phenobarbital in two genetic types.
    Burstein S
    Endocrinology; 1968 Mar; 82(3):547-54. PubMed ID: 4384436
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of phenobarbital on hepatic glucose metabolism and NADPH production in Zucker rats.
    Karvonen I; Huupponen R; Niemelä KM; Sotaniemi E
    Arch Int Pharmacodyn Ther; 1989; 302():40-8. PubMed ID: 2700066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.
    Jollow DJ; Mitchell JR; Zampaglione N; Gillette JR
    Pharmacology; 1974; 11(3):151-69. PubMed ID: 4831804
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of saturated fat diets on rat liver NADP-linked enzymes.
    Tepperman HM; Tepperman J
    Am J Physiol; 1965 Oct; 209(4):773-80. PubMed ID: 4378890
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationships of ATP to fatty liver: effects of adenine analogue, 4-aminopyrazolopyrimidine on lipid metabolism in rat liver.
    Ottani V; Puddu P; Zanetti P; Marchetti M
    Metabolism; 1970 Feb; 19(2):140-7. PubMed ID: 4391470
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.