These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 4402522)

  • 1. Hydrogen exchange and double bond formation in cholesterol biosynthesis.
    Fiecchi A; GAlli Kienle M; Scala A; Galli G; Grossi Paoletti E; Cattabeni F; Paoletti R
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):147-65. PubMed ID: 4402522
    [No Abstract]   [Full Text] [Related]  

  • 2. Recent investigations on the nature of sterol intermediates in the biosynthesis of cholesterol.
    Schroepfer GJ; Lutsky BN; Martin JA; Huntoon S; Fourcans B; Lee WH; Vermillion J
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):125-46. PubMed ID: 4402971
    [No Abstract]   [Full Text] [Related]  

  • 3. Recent investigations on the nature of sterol intermediates in the biosynthesis of cholesterol.
    Schroepfer GJ; Lutsky BN; Martin JA; Huntoon S; Fourcans B; Lee WH; Vermilion J
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):125-46. PubMed ID: 4401773
    [No Abstract]   [Full Text] [Related]  

  • 4. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
    Watkinson IA; Wilton DC; Munday KA; Akhtar M
    Biochem J; 1971 Jan; 121(1):131-7. PubMed ID: 4398958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of 8(14) monoene sterols in cholesterol biosynthesis.
    Fiecchi A; Scala A; Cattabeni F; Grossi Paoletti E
    Life Sci II; 1970 Nov; 9(21):1201-5. PubMed ID: 5487663
    [No Abstract]   [Full Text] [Related]  

  • 6. Substrate activation in pyridine nucleotide-linked reactions: illustrations from the steroid field.
    Akhtar M; Wilton DC; Watkinson IA; Rahimtula AD
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):167-77. PubMed ID: 4401774
    [No Abstract]   [Full Text] [Related]  

  • 7. The stereochemistry of hydrogen elimination during 7,8-double bond formation by Tetrahymena pyriformis.
    Wilton DC; Akhtar M
    Biochem J; 1970 Feb; 116(3):337-9. PubMed ID: 5435681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the sequencing in sterol biosynthesis.
    Nes WR
    Lipids; 1971 Apr; 6(4):219-24. PubMed ID: 4997338
    [No Abstract]   [Full Text] [Related]  

  • 9. Lack of mammalian reduction or alkylation of 24-methylenecholesterol.
    Nes WR; Cannon JW; Thampi NS; Malya PA
    J Biol Chem; 1973 Jan; 248(2):484-7. PubMed ID: 4684690
    [No Abstract]   [Full Text] [Related]  

  • 10. Partial purification of a microsomal sterol 4 -carboxylic acid decarboxylase.
    Rahimtula AD; Gaylor JL
    J Biol Chem; 1972 Jan; 247(1):9-15. PubMed ID: 4401584
    [No Abstract]   [Full Text] [Related]  

  • 11. The reversibility of the isomerization of the delta8 to delta7 bond in cholesterol biosynthesis.
    Scala A; Galli-Kienle M; Anastasia M; Galli G
    Eur J Biochem; 1974 Oct; 48(1):263-9. PubMed ID: 4475632
    [No Abstract]   [Full Text] [Related]  

  • 12. Investigation of the component reactions of oxidative demethylation of sterols. Metabolism of 4 -hydroxymethyl steroids.
    Miller WL; Brady DR; Gaylor JL
    J Biol Chem; 1971 Aug; 246(16):5147-53. PubMed ID: 4398294
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of sterols and steroids from acetate-14-C by human fetal ovaries.
    Jungmann RA; Schweppe JS
    J Clin Endocrinol Metab; 1968 Nov; 28(11):1599-604. PubMed ID: 4235153
    [No Abstract]   [Full Text] [Related]  

  • 14. The status of C-6, C-7, C-15 and C-16 hydrogen atoms in cholesterol biosynthesis.
    Akhtar M; Rahimtula AD; Watkinson IA; Wilton DC; Munday KA
    Eur J Biochem; 1969 May; 9(1):107-11. PubMed ID: 5785581
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of microbial transformation of cholesterol into coprostanol.
    Björkhem I; Gustafsson JA
    Eur J Biochem; 1971 Aug; 21(3):428-32. PubMed ID: 5569608
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the enzymatic conversion of oxygen-substituted sterols to cholesterol.
    Fiecchi A; Kienle MG; Scala A; Galli G; Paoletti R; Paoletti EG
    J Biol Chem; 1972 Sep; 247(18):5898-904. PubMed ID: 5057086
    [No Abstract]   [Full Text] [Related]  

  • 17. 4,4-dimethyl-5-alpha-cholesta-8,14-dien-3-beta-ol. A new precursor of cholesterol in mammalian tissues.
    Fiecchi A; Canonica L; Scala A; Cattabeni F; Paoletti EG; Paoletti R
    Life Sci; 1969 Jun; 8(12):629-34. PubMed ID: 5804656
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of cholesterol biosynthesis by the respiratory chain inhibitors in human placenta and in rat liver.
    Boguslawski W; Zelewski L
    Biochem Pharmacol; 1971 Dec; 20(12):3431-4. PubMed ID: 5132889
    [No Abstract]   [Full Text] [Related]  

  • 19. 5 Alpha-cholest-8(14)-en-3 beta-ol, a possible intermediate in the biosynthesis of cholesterol. Enzymatic conversion to cholesterol and isolation from rat skin.
    Lee WH; Lutsky BN; chropfer GJ
    J Biol Chem; 1969 Oct; 244(20):5440-8. PubMed ID: 5348596
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of an inhibitor of cholesterol biosynthesis (AY-9944) on liver, serum and brain sterols of young chicks.
    Lupien PJ; Martin GB
    Rev Can Biol; 1969 Jun; 28(2):101-9. PubMed ID: 5809964
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.