These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 4403392)

  • 21. [Flavoprotein-iron-sulfur-protein complexes, with special reference to the catalytic activities of the ferredoxin NADP reductase-ferredoxin complex (author's transl)].
    Nakamura S
    Tanpakushitsu Kakusan Koso; 1973 Dec; 18(12):1104-13. PubMed ID: 4148733
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on adrenal steroid hydroxylases. Reactivity of iron atoms in adrenal iron-sulfur protein (adrenodoxin) with iron-chelating agents.
    Kimura T; Nakamura S
    Biochemistry; 1971 Nov; 10(24):4517-22. PubMed ID: 4401127
    [No Abstract]   [Full Text] [Related]  

  • 23. Complex formation between ferredoxin triphosphopyridine nucleotide reductase and electron transfer proteins.
    Foust GP; Mayhew SG; Massey V
    J Biol Chem; 1969 Feb; 244(3):964-70. PubMed ID: 4388814
    [No Abstract]   [Full Text] [Related]  

  • 24. PREPARATION AND SOME PROPERTIES OF A SOLUBLE NITRATE REDUCTASE FROM RHIZOBIUM JAPONICUM.
    LOWE RH; EVANS HJ
    Biochim Biophys Acta; 1964 Jun; 85():377-89. PubMed ID: 14194853
    [No Abstract]   [Full Text] [Related]  

  • 25. Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts.
    Asada K; Kiso K
    Eur J Biochem; 1973 Mar; 33(2):253-7. PubMed ID: 4144355
    [No Abstract]   [Full Text] [Related]  

  • 26. Cytochrome c enhancement of singlet molecular oxygen production by the NADPH-dependent adrenodoxin reductase-adrenodoxin system: the role of singlet oxygen in damaging adrenal mitochondrial membranes.
    Goda K; Chu J; Kimura T; Schaap AP
    Biochem Biophys Res Commun; 1973 Jun; 52(4):1300-6. PubMed ID: 4146221
    [No Abstract]   [Full Text] [Related]  

  • 27. Inhibition of ferredoxin: NADP+ reductase activity by the hexacyanochromate (III) ion.
    Armstrong FA; Corbett SG
    Biochem Biophys Res Commun; 1986 Dec; 141(2):578-83. PubMed ID: 3801016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex formation by ferredoxin-NADP reductase with ferredoxin or NADP.
    Shin M
    Biochim Biophys Acta; 1973 Jan; 292(1):13-9. PubMed ID: 4145131
    [No Abstract]   [Full Text] [Related]  

  • 29. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.
    Nishikimi M; Appaji N; Yagi K
    Biochem Biophys Res Commun; 1972 Jan; 46(2):849-54. PubMed ID: 4400444
    [No Abstract]   [Full Text] [Related]  

  • 30. Ferredoxin-Sepharose 4B as a tool for the purification of ferredoxin-NADP+ reductase.
    Shin M; Oshino R
    J Biochem; 1978 Feb; 83(2):357-61. PubMed ID: 632227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The generation of superoixide radical during the autoxidation of ferredoxins.
    Misra HP; Fridovich I
    J Biol Chem; 1971 Nov; 246(22):6886-90. PubMed ID: 4399476
    [No Abstract]   [Full Text] [Related]  

  • 32. Circular dichroism studies of the complex between ferredoxin and ferredoxin-NADP reductase.
    Cammack R; Neumann J; Nelson N; Hall DO
    Biochem Biophys Res Commun; 1971 Jan; 42(2):292-7. PubMed ID: 4395971
    [No Abstract]   [Full Text] [Related]  

  • 33. One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes.
    Iyanagi T; Yamazaki I
    Biochim Biophys Acta; 1969 Apr; 172(3):370-81. PubMed ID: 4388705
    [No Abstract]   [Full Text] [Related]  

  • 34. Ferredoxin-NADP reductase from Pinus pinea.
    Firenzuoli AM; Ramponi G; Vanni P; Zanobini A
    Life Sci; 1968 Sep; 7(18):905-13. PubMed ID: 4388777
    [No Abstract]   [Full Text] [Related]  

  • 35. Reconstitution of a fatty acid omega-hydroxylation system by a solubilized kidney microsomal preparation, ferredoxin, and ferredoxin-NADP reductase.
    Ichihara K; Kusunose E; Kusunose M
    Biochim Biophys Acta; 1970 May; 202(3):560-2. PubMed ID: 4392752
    [No Abstract]   [Full Text] [Related]  

  • 36. NADPH-cytochrome554 reduction by NADP-reductase and ferredoxin isolated from the diatom, Navicula pelliculosa.
    Yamanaka T; Kamen MD
    Biochem Biophys Res Commun; 1965 Jun; 19(6):751-4. PubMed ID: 4378810
    [No Abstract]   [Full Text] [Related]  

  • 37. A complex formation of the adrenal iron-sulfur protein (adrenodoxin) with cytochrome c and the decomposition of the iron-sulfur center.
    Manabe T; Kimura T
    FEBS Lett; 1974 Oct; 47(1):113-6. PubMed ID: 4154211
    [No Abstract]   [Full Text] [Related]  

  • 38. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS.
    SHIN M; TAGAWA K; ARNON DI
    Biochem Z; 1963; 338():84-96. PubMed ID: 14087348
    [No Abstract]   [Full Text] [Related]  

  • 39. The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite.
    Lambeth DO; Palmer G
    J Biol Chem; 1973 Sep; 248(17):6095-103. PubMed ID: 4353631
    [No Abstract]   [Full Text] [Related]  

  • 40. A study of the mechanism of electron transfer in cytochrome c. Chromium as a probe.
    Kowalsky A
    J Biol Chem; 1969 Dec; 244(24):6619-25. PubMed ID: 4311913
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.