These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4403485)

  • 21. Increased dopamine concentration in the striatum in the mouse by FLA-63, a dopamine- -hydroxylase inhibitor.
    Svensson TH
    J Pharm Pharmacol; 1973 Jan; 25(1):73-5. PubMed ID: 4146204
    [No Abstract]   [Full Text] [Related]  

  • 22. Fiber connections of the basal ganglia.
    Graybiel AM; Ragsdale CW
    Prog Brain Res; 1979; 51():237-83. PubMed ID: 399353
    [No Abstract]   [Full Text] [Related]  

  • 23. Antipsychotic drugs and catecholamine synapses. Summary of the session.
    Andén NE
    J Psychiatr Res; 1974; 11():97-104. PubMed ID: 4156797
    [No Abstract]   [Full Text] [Related]  

  • 24. 3-Methoxy-4-hydroxyphenylglycol sulphate (MOPEG-SO4) as an index of cerebral noradrenaline turnover following depletion of transmitter stores in the rat.
    Dolphin A; Jenner P; Marsden CD
    J Pharm Pharmacol; 1978 Sep; 30(9):580-2. PubMed ID: 29100
    [No Abstract]   [Full Text] [Related]  

  • 25. Inhibition of tyrosine hydroxylase but not dopamine-beta-hydroxylase facilitates the action of behaviourally ineffective doses of neuroleptics.
    Antelman SM; Szechtman H; Chin P; Fisher AE
    J Pharm Pharmacol; 1976 Jan; 28(1):66-8. PubMed ID: 6656
    [No Abstract]   [Full Text] [Related]  

  • 26. Catecholaminergic innervation of the subthalamic nucleus: evidence for a rostral continuation of the A9 (substantia nigra) dopaminergic cell group.
    Meibach RC; Katzman R
    Brain Res; 1979 Sep; 173(2):364-8. PubMed ID: 487099
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of catecholaminergic drugs upon memory storage processes in mice.
    Haycock JW; Van Buskirk R; McGaugh JL
    Behav Biol; 1977 Jul; 20(3):281-310. PubMed ID: 19010
    [No Abstract]   [Full Text] [Related]  

  • 28. Inhibition of striatal energy metabolism produces cell loss in the ipsilateral substantia nigra.
    Sonsalla PK; Manzino L; Sinton CM; Liang CL; German DC; Zeevalk GD
    Brain Res; 1997 Oct; 773(1-2):223-6. PubMed ID: 9409726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of catecholamine depleting drugs and d-amphetamine on self-stimulation of the substantia nigra and locus coeruleus.
    Cooper BR; Konkol RJ; Breese GR
    J Pharmacol Exp Ther; 1978 Mar; 204(3):592-605. PubMed ID: 24729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological analysis of the functional ontogeny of the nigrostriatal dopaminergic neurons.
    Cheronis JC; Erinoff L; Heller A; Hoffmann PC
    Brain Res; 1979 Jun; 169(3):545-60. PubMed ID: 36209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical fluorescence study.
    Clavier RM; Routtenberg A
    Brain Res; 1974 May; 72(1):25-40. PubMed ID: 4364475
    [No Abstract]   [Full Text] [Related]  

  • 32. An ontogenic study on the effect of catecholamine receptor-stimulating agents on the turnover of noradrenaline and dopamine in the brain.
    Kellogg C; Wennerström G
    Brain Res; 1974 Oct; 79(3):451-64. PubMed ID: 4371328
    [No Abstract]   [Full Text] [Related]  

  • 33. Striatal inhomogeneities and basal ganglia function.
    Penney JB; Young AB
    Mov Disord; 1986; 1(1):3-15. PubMed ID: 2848190
    [No Abstract]   [Full Text] [Related]  

  • 34. Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats.
    Gołembiowska K; Dziubina A
    Neuropharmacology; 2004 Sep; 47(3):414-26. PubMed ID: 15275831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The basal ganglia and motor control.
    Groenewegen HJ
    Neural Plast; 2003; 10(1-2):107-20. PubMed ID: 14640312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear configuration of the diencephalon of Tamandua tetradactyla and Myrmecophaga jubata.
    Kaelber WW
    J Comp Neurol; 1966 Oct; 128(2):133-70. PubMed ID: 4961485
    [No Abstract]   [Full Text] [Related]  

  • 37. Reserpine selectively increases tyrosine hydroxylase and dopamine-beta-hydroxylase enzyme protein in central noradrenergic neurons.
    Reis DJ; Joh TH; Ross RA; Pickel VM
    Brain Res; 1974 Dec; 81(2):380-6. PubMed ID: 4154798
    [No Abstract]   [Full Text] [Related]  

  • 38. Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection.
    Janson AM; Fuxe K; Agnati LF; Kitayama I; Härfstrand A; Andersson K; Goldstein M
    Brain Res; 1988 Jul; 455(2):332-45. PubMed ID: 2900058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a noradrenergic and dopaminergic mechanism in the hyperactivity produced by 4, alpha-dimethyl-m-tyramine (H 77-77) in rats.
    Lassen JB
    Psychopharmacologia; 1974; 37(4):331-40. PubMed ID: 4136728
    [No Abstract]   [Full Text] [Related]  

  • 40. Dopaminergic involvement in hypothalamic function: extrahypothalamic and hypothalamic control. A neuroanatomical analysis.
    Fuxe K; Goldstein M; Hökfelt T; Jonsson G; Lidbrink P
    Adv Neurol; 1974; 5():405-19. PubMed ID: 4374065
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.