BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4403668)

  • 1. The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation.
    Tsukada Y; Perlman D
    Biotechnol Bioeng; 1972 Sep; 14(5):799-810. PubMed ID: 4403668
    [No Abstract]   [Full Text] [Related]  

  • 2. The fermentation of L-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of L-sorbose to 2-keto-L-gulonic acid.
    Tsukada Y; Perlman D
    Biotechnol Bioeng; 1972 Sep; 14(5):811-8. PubMed ID: 5071667
    [No Abstract]   [Full Text] [Related]  

  • 3. Conversion of L-sorbose to 5-keto-D-fructose by Pseudomonads.
    Longley RP; Perlman D
    Biotechnol Bioeng; 1972 Sep; 14(5):843-6. PubMed ID: 4627238
    [No Abstract]   [Full Text] [Related]  

  • 4. New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria.
    Makover S; Ramsey GB; Vane FM; Witt CG; Wright RB
    Biotechnol Bioeng; 1975 Oct; 17(10):1485-1514. PubMed ID: 1182275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature.
    Hattori H; Yakushi T; Matsutani M; Moonmangmee D; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1531-40. PubMed ID: 22434571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation by organic solvents and detergents of conversion of L-sorbose to L-sorbosone by Gluconobacter melanogenus IFO 3293.
    Martin CK; Perlman D
    Biotechnol Bioeng; 1975 Oct; 17(10):1473-83. PubMed ID: 171012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of L-sorbose to L-sorbosone by immobilized cells of Gluconobacter melanogenus IFO 3293.
    Martin CK; Perlman D
    Biotechnol Bioeng; 1976 Feb; 18(2):217-37. PubMed ID: 1252610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and Properties of NADPH-Dependent L-Sorbose Reductase from Gluconobacter melanogenus IFO 3294.
    Adachi O; Ano Y; Moonmangmee D; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 1999; 63(12):2137-43. PubMed ID: 27373916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and cobamide coenzyme-dependent formation of 3,5-diaminohexanoic acid, an intermediate in lysine fermentation.
    Dekker EE; Barker HA
    J Biol Chem; 1968 Jun; 243(12):3232-7. PubMed ID: 4297779
    [No Abstract]   [Full Text] [Related]  

  • 13. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025.
    Takagi Y; Sugisawa T; Hoshino T
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1049-56. PubMed ID: 19137290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the synthesis of levan].
    Tanneberger S; Behrens U
    Z Allg Mikrobiol; 1963; 3(4):289-96. PubMed ID: 4873132
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymatic studies on the oxidation of sugar and sugar alcohol. 3. Purification and properties of L-sorbose oxidase from Trametes sanguinea.
    Yamada Y; Lizuka K; Aida K; Uemura T
    J Biochem; 1967 Aug; 62(2):223-9. PubMed ID: 5586487
    [No Abstract]   [Full Text] [Related]  

  • 16. [Possibilities of comparison of microbiological and chemical studies of silaging processes of sugar beat leaf silages].
    Rojahn J; Sternkopf G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(2):176-89. PubMed ID: 4918693
    [No Abstract]   [Full Text] [Related]  

  • 17. [Uptake of the sugars sorbose, fructose and glucose by sorbose-resistant mutants of Neurospora crassa].
    Klingmüller W
    Z Naturforsch B; 1967 Mar; 22(3):327-35. PubMed ID: 4384839
    [No Abstract]   [Full Text] [Related]  

  • 18. Long-term storage of acetic acid bacteria by means of lyophilization.
    Sourek J; Kulhánek M
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(6):580-5. PubMed ID: 4912749
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation and identification of 3-keto-5-aminohexanoic acid, a probable intermediate in lysine fermentation.
    Rimerman EA; Barker HA
    J Biol Chem; 1968 Dec; 243(23):6151-60. PubMed ID: 4301989
    [No Abstract]   [Full Text] [Related]  

  • 20. A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP
    Matsumoto N; Hattori H; Matsutani M; Matayoshi C; Toyama H; Kataoka N; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.