These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4403969)

  • 1. Lycopersene and prelycopersene pyrophosphate. Intermediates in carotene biosynthesis.
    Qureshi AA; Barnes FJ; Porter JW
    J Biol Chem; 1972 Oct; 247(20):6730-2. PubMed ID: 4403969
    [No Abstract]   [Full Text] [Related]  

  • 2. Prelycopersene pyrophosphate and lycopersene. Intermediates in carotene biosynthesis.
    Barnes FJ; Qureshi AA; Semmler EJ; Porter JW
    J Biol Chem; 1973 Apr; 248(8):2768-73. PubMed ID: 4144544
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of prelycopersene pyrophosphate and lycopersene by squalene synthetase.
    Qureshi AA; Barnes FJ; Semmler EJ; Porter JW
    J Biol Chem; 1973 Apr; 248(8):2755-67. PubMed ID: 4144543
    [No Abstract]   [Full Text] [Related]  

  • 4. Dissociation of prelycopersene pyrophosphate synthetase from phytoene synthetase complex of tomato fruit plastids.
    Islam M; Lyrene SA; Miller EM; Porter JW
    J Biol Chem; 1977 Feb; 252(4):1523-5. PubMed ID: 838727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic conversion of isopentenyl pyrophosphate-4-14C and phytoene-14C to acyclic carotenes by an ammonium sulfate-precipitated spinach enzyme system.
    Subbarayan C; Kushwaha SC; Suzue G; Porter JW
    Arch Biochem Biophys; 1970 Apr; 137(2):547-57. PubMed ID: 4392451
    [No Abstract]   [Full Text] [Related]  

  • 6. Plant sterol metabolism. Demonstration and identification of a biosynthetic intermediate between farnesyl PP and squalene in a higher plant.
    Heintz R; Benveniste P; Robinson WH; Coates RM
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1547-53. PubMed ID: 4344813
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanism of squalene biosynthesis: evidence against the involvement of free nerolidyl pyrophosphate.
    Sofer SS; Rilling HC
    J Lipid Res; 1969 Mar; 10(2):183-7. PubMed ID: 4305712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of lycopene from [4-14C]isopentenyl pyrophosphate.
    Suzue G; Porter JW
    Biochim Biophys Acta; 1969 Apr; 176(3):653-6. PubMed ID: 4308120
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis and structure of a new intermediate between farnesyl pyrophosphate and squalene.
    Popják G; Edmond J; Clifford K; Williams V
    J Biol Chem; 1969 Apr; 244(7):1897-918. PubMed ID: 4388617
    [No Abstract]   [Full Text] [Related]  

  • 10. Conversion of mevalonic acid into prenyl hydrocarbons as exemplified by the synthesis of squalene.
    Popják G
    Biochem Soc Symp; 1970; 29():17-33. PubMed ID: 4332649
    [No Abstract]   [Full Text] [Related]  

  • 11. Attempts to detect lycopersene formation in yeast.
    Scharf SS; Simpson KL
    Biochem J; 1968 Jan; 106(1):311-5. PubMed ID: 5753091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of the enzymes effecting the conversion of acetyl CoA to squalene in homogenates of hog aorta.
    Slakey LL; Ness GC; Qureshi N; Porter JW
    J Lipid Res; 1973 Jul; 14(4):485-94. PubMed ID: 4351784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial substrates in squalene and sterol biosynthesis.
    Polito A; Popják G; Parker T
    J Biol Chem; 1972 Jun; 247(11):3464-70. PubMed ID: 4337856
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the mechanism of squalene biosynthesis. The structure of presqualene pyrophosphate.
    Epstein WW; Rilling HC
    J Biol Chem; 1970 Sep; 245(18):4597-605. PubMed ID: 4318477
    [No Abstract]   [Full Text] [Related]  

  • 15. Incorporation of 2-[14C]mevalonic acid into phytoene by isolated chloroplasts.
    Charlton JM; Treharne KJ; Goodwin TW
    Biochem J; 1967 Oct; 105(1):205-12. PubMed ID: 4383323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presqualene alcohol. Further evidence on the structure of a C 30 precursor of squalene.
    Edmond J; Popják G; Wong SM; Williams VP
    J Biol Chem; 1971 Oct; 246(20):6254-71. PubMed ID: 4399596
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum.
    Kushwaha SC; Kates M; Porter JW
    Can J Biochem; 1976 Sep; 54(9):816-23. PubMed ID: 971465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The isolation, purification, and characterization of cis-zeta-carotene and the demonstration of its conversion to acyclic, monocyclic and dicyclic carotenes by a soluble enzyme system obtained from the plastids of tangerine tomato fruits.
    Qureshi AA; Qureshi N; Kim M; Porter JW
    Arch Biochem Biophys; 1974 May; 162(1):117-25. PubMed ID: 4831327
    [No Abstract]   [Full Text] [Related]  

  • 19. The enzymatic conversion of cis-(14C)phytofluene, trans-(14C)phytofluene, and trans-zeta-(14C)carotene to more unsaturated acyclic, monocyclic, and dicyclic carotenes by a cell-free preparation of red tomato fruits.
    Qureshi AA; Andrewes AG; Qureshi N; Porter JW
    Arch Biochem Biophys; 1974 May; 162(1):93-107. PubMed ID: 4151578
    [No Abstract]   [Full Text] [Related]  

  • 20. [Utilization of farnesyl pyrophosphate by rat liver microsomes in the absence of nicotinamide adenine dinucleotides].
    Gosselin L
    Arch Int Physiol Biochim; 1964 Mar; 72(2):321-3. PubMed ID: 4157959
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.