These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 4404354)

  • 1. [Synthesis of enzymes of the tricarboxylic acid cycle in Hydrogenomonas eutropha strain H 16].
    Glaeser H; Schlegel HG
    Arch Mikrobiol; 1972; 86(4):315-25. PubMed ID: 4404354
    [No Abstract]   [Full Text] [Related]  

  • 2. [NADP- and NAD-specific isocitrate dehydrogenase in Hydrogenomonas eutropha strain H 16].
    Glaeser H; Schlegel HG
    Arch Mikrobiol; 1972; 86(4):327-37. PubMed ID: 4404355
    [No Abstract]   [Full Text] [Related]  

  • 3. The regulation of synthesis of Krebs cycle enzymes in Neurospora by catabolite and end product repression.
    Flavell RB; Woodward DO
    Eur J Biochem; 1970 Apr; 13(3):548-53. PubMed ID: 5444160
    [No Abstract]   [Full Text] [Related]  

  • 4. NAD and NADP-dependent glutamate dehydrogenase in Hydrogenomonas H 16.
    Krämer J
    Arch Mikrobiol; 1970; 71(3):226-34. PubMed ID: 4394245
    [No Abstract]   [Full Text] [Related]  

  • 5. [Synthesis of C 4 -dicarboxylic acids from pyruvate by Hydrogenomonas eutropha strain H16].
    Frings W; Schlegel HG
    Arch Mikrobiol; 1971; 79(3):204-19. PubMed ID: 4332831
    [No Abstract]   [Full Text] [Related]  

  • 6. The utilization of 2-ketogluconate by Hydrogenomonas eutropha H 16.
    Nandadasa HG; Andreesen M; Schlegel HG
    Arch Microbiol; 1974; 99(1):15-23. PubMed ID: 4212460
    [No Abstract]   [Full Text] [Related]  

  • 7. Methylamine metabolism in a pseudomonas species.
    Bellion E; Hersh LB
    Arch Biochem Biophys; 1972 Nov; 153(1):368-74. PubMed ID: 4650618
    [No Abstract]   [Full Text] [Related]  

  • 8. [Degradation of uric acid and biosynthesis of the enzymes uricase, glyoxylate carboligase and urease in Hydrogenomonas H 16. I. Formation of glyoxylate carboliase and D-glycerate-3 dehydrogenase].
    Kaltwasser H
    Arch Mikrobiol; 1968; 64(1):71-84. PubMed ID: 4387831
    [No Abstract]   [Full Text] [Related]  

  • 9. [The influence of culture conditions on the NAD(P) content of Rhodospirillum rubrum cells].
    Schön G
    Arch Mikrobiol; 1971; 79(2):147-63. PubMed ID: 4399577
    [No Abstract]   [Full Text] [Related]  

  • 10. Control of the citric acid cycle by glyoxylate. Mechanism of the inhibition by oxalomalate and gamma-hydroxy-alpha-oxoglutarate.
    Ruffo A; Testa E; Adinolfi A; Pelizza G; Moratti R
    Biochem J; 1967 Apr; 103(1):19-23. PubMed ID: 6033757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and gene disruption analysis of the isocitrate dehydrogenase family in yeast.
    Zhao WN; McAlister-Henn L
    Biochemistry; 1996 Jun; 35(24):7873-8. PubMed ID: 8672488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of progesterone biosynthesis in human placental mitochondria by Krebs cycle metabolites.
    Klimek J; Boguslawski W; Tialowska B; Zelewski L
    Acta Biochim Pol; 1976; 23(2-3):185-92. PubMed ID: 970033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.
    Kobayashi K; Hattori T; Hayashi R; Kirimura K
    Biosci Biotechnol Biochem; 2014; 78(7):1246-53. PubMed ID: 25229866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate.
    Holms WH; Bennett PM
    J Gen Microbiol; 1971 Jan; 65(1):57-68. PubMed ID: 4932752
    [No Abstract]   [Full Text] [Related]  

  • 15. [Carbohydrate metabolism enzymes of purple sulfur-bacteria during growth in the dark].
    Krasil'nikova EN
    Mikrobiologiia; 1977; 46(2):217-22. PubMed ID: 882007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation.
    Lemaitre T; Urbanczyk-Wochniak E; Flesch V; Bismuth E; Fernie AR; Hodges M
    Plant Physiol; 2007 Jul; 144(3):1546-58. PubMed ID: 17468208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [On metabolic regulation of initial reactions of the tricarboxylic cycle].
    Guly MF
    Ukr Biokhim Zh; 1977; 49(5):115-29. PubMed ID: 21479
    [No Abstract]   [Full Text] [Related]  

  • 18. [Characteristics of the oxidative metabolism in strains with varying levels of fucidin biosynthesis].
    Gol'dshteĭn VL; Torbochkina LI; Bartoshevich IuE
    Antibiotiki; 1975 Apr; 20(4):333-9. PubMed ID: 2097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tricarboxylic acid-cycle enzymes and ATP pool in facultative and obligate methylotrophs: Pseudomonas J26 and Methylomonas Pl1.
    Michalik J; Budohoski L; Raczyńska-Bojanowska K
    Acta Biochim Pol; 1979; 26(4):397-406. PubMed ID: 121007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Uric acid degradation and biosynthesis of the enzymes uricase, glyoxylate carboligase and urease in Hydrogenomonas H 16. II. Effect of uric acid, fructose and nitrogen deficiency on enzyme formation].
    Kaltwasser H
    Arch Mikrobiol; 1969; 65(3):288-302. PubMed ID: 4988686
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.