BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 4404623)

  • 1. NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid.
    Ghosh MK; Mukhopadhyay M; Chatterjee IB
    Mol Cell Biochem; 1997 Jan; 166(1-2):35-44. PubMed ID: 9046019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH-dependent lipid peroxidation capacity in unfixed tissue sections: characterization of the pro-oxidizing conditions and optimization of the histochemical detection.
    Thomas M; Frederiks WM; Van Noorden CJ; Bosch KS; Pompella A
    Histochem J; 1994 Mar; 26(3):189-96. PubMed ID: 8206788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid peroxidation and the reduction of ADP-Fe3+ chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria.
    Takeshige K; Takayanagi R; Minakami S
    Biochem J; 1980 Dec; 192(3):861-6. PubMed ID: 6786284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-related differences in NADPH-dependent lipid peroxidation induced by cadmium.
    Sato M; Nagai Y
    Arch Toxicol; 1986 Oct; 59(3):156-9. PubMed ID: 3813882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron- and ascorbic acid-induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds.
    Hannemann J; Duwe J; Baumann K
    Cancer Chemother Pharmacol; 1991; 28(6):427-33. PubMed ID: 1934247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of methyl and ethyl mercury into inorganic mercury by hydroxyl radical produced from rat liver microsomes.
    Suda I; Hirayama K
    Arch Toxicol; 1992; 66(6):398-402. PubMed ID: 1332650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands.
    Richardson J; Thomas KA; Rubin BH; Richardson DC
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1349-53. PubMed ID: 1055410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver.
    Tyler DD
    Biochem J; 1975 Jun; 147(3):493-504. PubMed ID: 810138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular aspects of catechol and pyrogallol inhibition of liver microsomal lipid peroxidation stimulated by ferrous ion-ADP-complexes or by carbon tetrachloride.
    Kappus H; Kieczka H; Scheulen M; Remmer H
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Nov; 300(2):179-87. PubMed ID: 593440
    [No Abstract]   [Full Text] [Related]  

  • 10. Photodestruction of pheomelanin: role of oxygen.
    Chedekel MR; Smith SK; Post PW; Pokora A; Vessell DL
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5395-9. PubMed ID: 281688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that superoxide radicals are involved in the hemolytic mechanism of phenylhydrazine.
    Valenzuela A; RĂ­os H; Neiman G
    Experientia; 1977 Jul; 33(7):962-3. PubMed ID: 196888
    [No Abstract]   [Full Text] [Related]  

  • 13. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH-dependen lipid peroxidation catalyzed by purified NADPH-cytochrome C reductase from rat liver microsomes.
    Pederson TC; Aust SD
    Biochem Biophys Res Commun; 1972 Aug; 48(4):789-95. PubMed ID: 4404623
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid peroxidation activity mediated by NADPH-cytochrome C reductase purified from rabbit liver microsomes.
    Kamataki T; Naminohira S; Sugita O; Kitagawa H
    Jpn J Pharmacol; 1978 Dec; 28(6):819-27. PubMed ID: 218031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative metabolism of aflatoxin B1 by rat liver microsomes in vitro and its effect on lipid peroxidation.
    Raj HG; Santhanam K; Gupta RP; Venkitasubramanian TA
    Res Commun Chem Pathol Pharmacol; 1974 Aug; 8(4):703-6. PubMed ID: 4153624
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of various detergents on kinetic characteristics of lipid peroxidation systems in rat liver microsomes.
    Mishin VM; Pospelova LN; Lyakhovich VV
    Arch Biochem Biophys; 1976 Jun; 174(2):630-6. PubMed ID: 7212
    [No Abstract]   [Full Text] [Related]  

  • 18. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450.
    Morehouse LA; Aust SD
    Free Radic Biol Med; 1988; 4(5):269-77. PubMed ID: 3129344
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.