These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4405232)

  • 1. Possible role of NADPH-dependent enoyl coenzyme A reductase in -oxidation of unsaturated fatty acids.
    Mizugaki M; Uchiyama M
    Biochem Biophys Res Commun; 1973 Jan; 50(1):48-53. PubMed ID: 4405232
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereospecific hydrogen transfer by NADPH-enoyl coenzyme A reductase to cis- and trans-isomers of 2-enoic acid.
    Mizugaki M; Uchiyama M
    J Biochem; 1973 Oct; 74(4):691-6. PubMed ID: 4763659
    [No Abstract]   [Full Text] [Related]  

  • 3. On the mechanism of malonyl-CoA independent fatty acid synthesis. II. Isolation, properties and subcellular location of trans-2,3-hexenoyl-CoA and trans-2,3-decenoyl-CoA reductase.
    Podack ER; Seubert W
    Biochim Biophys Acta; 1972 Oct; 280(2):235-47. PubMed ID: 4404888
    [No Abstract]   [Full Text] [Related]  

  • 4. The involvement of semidehydroascorbate reductase in the oxidation of NADH by lipid peroxide in mitochondria and microsomes.
    Green RC; O'Brien PJ
    Biochim Biophys Acta; 1973 Feb; 293(2):334-42. PubMed ID: 4145815
    [No Abstract]   [Full Text] [Related]  

  • 5. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.
    Smeland TE; Nada M; Cuebas D; Schulz H
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6673-7. PubMed ID: 1495956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The beta-oxidative cleavage of long-chain fatty acids in rat-liver cytoplasm.
    Fiecchi A; Galli-Kienle M; Scala A; Galli G; Paoletti R
    Eur J Biochem; 1973 Oct; 38(3):516-28. PubMed ID: 4772671
    [No Abstract]   [Full Text] [Related]  

  • 7. Properties of malonyl-CoA decarboxylase and its relation with malonyl-CoA incorporation into fatty acids by rat liver mitochondria.
    Landriscina C; Gnoni GV; Quagliariello E
    Eur J Biochem; 1971 Apr; 19(4):573-80. PubMed ID: 5578610
    [No Abstract]   [Full Text] [Related]  

  • 8. Reduction pathway of cis-5 unsaturated fatty acids in intact rat-liver and rat-heart mitochondria: assessment with stable-isotype-labelled substrates.
    Tserng KY; Jin SJ; Chen LS
    Biochem J; 1996 Jan; 313 ( Pt 2)(Pt 2):581-8. PubMed ID: 8573096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin reductase from rat liver.
    Larsson A
    Eur J Biochem; 1973 Jun; 35(2):346-9. PubMed ID: 4146223
    [No Abstract]   [Full Text] [Related]  

  • 10. Activation of long chain fatty acids by subcellular fractions of rat liver. 3. Effect of ethylenic bond position on acyl-CoA formation of cis-octadecenoates.
    Lippel K; Carpenter D; Gunstone FD; Ismail IA
    Lipids; 1973 Mar; 8(3):124-8. PubMed ID: 4692879
    [No Abstract]   [Full Text] [Related]  

  • 11. Proceedings: Partial purification and possible physiological function of a 4-enoyl-CoA reductase.
    Kunau WH; Bartnik F
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1221. PubMed ID: 4461540
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.
    Tserng KY; Chen LS; Jin SJ
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):23-8. PubMed ID: 7717980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of NADPH enoyl-coA reductase in Candida grown in the presence of unsaturated fatty acids.
    Ishidate K; Mizugaki M; Uchiyama M
    J Biochem; 1974 Nov; 76(5):1139-42. PubMed ID: 4616030
    [No Abstract]   [Full Text] [Related]  

  • 14. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system.
    Correia MA; Mannering GJ
    Mol Pharmacol; 1973 Jul; 9(4):455-69. PubMed ID: 4146889
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanisms and physiological roles of fatty acid chain elongation in microsomes and mitochondria.
    Seubert W; Podack ER
    Mol Cell Biochem; 1973 May; 1(1):29-40. PubMed ID: 4154399
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic alterations of fatty acids.
    Fulco AJ
    Annu Rev Biochem; 1974; 43(0):215-41. PubMed ID: 4604757
    [No Abstract]   [Full Text] [Related]  

  • 17. NADH- and NADPH-linked aquacobalamin reductases occur in both mitochondrial and microsomal membranes of rat liver.
    Watanabe F; Nakano Y; Maruno S; Tachikake N; Tamura Y; Kitaoka S
    Biochem Biophys Res Commun; 1989 Dec; 165(2):675-9. PubMed ID: 2597154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on nicotinamide adenine dinucleotide phosphate reductase of spinach chloroplasts.
    Keirns JJ; Wang JH
    J Biol Chem; 1972 Nov; 247(22):7374-82. PubMed ID: 4404748
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of cytochrome b5 in the NADH synergism of NADPH-dependent reactions of the cytochrome P-450 monooxygenase system of hepatic microsomes.
    Mannerign GJ
    Adv Exp Med Biol; 1975; 58(00):405-34. PubMed ID: 239543
    [No Abstract]   [Full Text] [Related]  

  • 20. Chain shortening of erucic acid by subcellular particles isolated from liver and heart of rat.
    Clouet P; Bezard J
    FEBS Lett; 1978 Sep; 93(1):165-8. PubMed ID: 29784
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.