These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4405335)

  • 1. Sodium and potassium transport in camel red cells.
    Dakkuri A; Naccache P; Sha'afi RI
    Comp Biochem Physiol A Comp Physiol; 1972 Dec; 43(4):1019-23. PubMed ID: 4405335
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of ouabain on gluclose metabolism and on fluxes of sodium and potassium of human blood cells.
    Funder J; Wieth JO
    Acta Physiol Scand; 1967 Sep; 71(1):113-24. PubMed ID: 6056954
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium and potassium content and membrane transport properties in red blood cells from newborn puppies.
    Miles PR; Lee P
    J Cell Physiol; 1972 Jun; 79(3):367-76. PubMed ID: 5039931
    [No Abstract]   [Full Text] [Related]  

  • 4. Cation transport in erythrocytes of normal and porphyric cows: transmembrane fluxes of sodium and potassium.
    Keeton KS; Kaneko JJ
    Res Vet Sci; 1973 Nov; 15(3):285-92. PubMed ID: 4792008
    [No Abstract]   [Full Text] [Related]  

  • 5. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. 8. The effect of membrane stabilizers on the transport of K + , Na + and glucose in muscle, adipocytes and erythrocytes.
    Clausen T; Harving H; Dahl-Hansen AB
    Biochim Biophys Acta; 1973 Mar; 298(2):393-411. PubMed ID: 4719137
    [No Abstract]   [Full Text] [Related]  

  • 6. Erythrocyte sodium transport and membrane adenosine triphosphatase in patients with thermal injury.
    Helmkamp GM; Blackwell JP; Wilmore DW
    Clin Chim Acta; 1973 Aug; 47(1):5-12. PubMed ID: 4270608
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of potassium and ouabain on sodium transport in human red cells.
    Levin ML; Rector FC; Seldin DW
    Am J Physiol; 1968 Jun; 214(6):1328-32. PubMed ID: 5649487
    [No Abstract]   [Full Text] [Related]  

  • 8. Cation movements in the high sodium erythrocyte of the cat.
    Sha'afi RI; Lieb WR
    J Gen Physiol; 1967 Jul; 50(6):1751-64. PubMed ID: 6034766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of sodium transport in erythrocytes.
    Schneider RP
    Arch Biochem Biophys; 1974 Feb; 160(2):552-60. PubMed ID: 4275464
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes.
    Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC
    Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity.
    Karlish SJ; Glynn IM
    Ann N Y Acad Sci; 1974; 242(0):461-70. PubMed ID: 4279599
    [No Abstract]   [Full Text] [Related]  

  • 12. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium fluxes in rat red blood cells in potassium-free solutions. Evidences for facilitated diffusion.
    Beaugé LA; Ortiz O
    J Membr Biol; 1973; 13(2):165-84. PubMed ID: 4778805
    [No Abstract]   [Full Text] [Related]  

  • 14. Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology.
    Dunn MJ
    Biochim Biophys Acta; 1974 May; 352(1):97-116. PubMed ID: 4854055
    [No Abstract]   [Full Text] [Related]  

  • 15. Incubation of HK and LK sheep red cells in vitro for long periods.
    Kepner GR; Tosteson DC
    Biochim Biophys Acta; 1972 May; 266(2):471-83. PubMed ID: 5038270
    [No Abstract]   [Full Text] [Related]  

  • 16. Cation transport and energy metabolism in the high Na+, low K+ erythrocyte of the harbor seal, Phoca vitulina.
    Robin ED; Murdaugh HV; Cross CE; Smith J; Theodore J
    Comp Biochem Physiol A Comp Physiol; 1971 Aug; 39(4):807-21. PubMed ID: 4398992
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of cell volume on potassium transport in human red cells.
    Poznansky M; Solomon AK
    Biochim Biophys Acta; 1972 Jul; 274(1):111-8. PubMed ID: 5044056
    [No Abstract]   [Full Text] [Related]  

  • 18. The polymorphism of red cell Na and K transport in essential hypertension: findings, controversies, and perspectives.
    Canessa M
    Prog Clin Biol Res; 1984; 159():293-315. PubMed ID: 6382325
    [No Abstract]   [Full Text] [Related]  

  • 19. Active transport of Rb86 in human red cells and rat brain slices.
    Bernstein JC; Israel Y
    J Pharmacol Exp Ther; 1970 Aug; 174(2):323-9. PubMed ID: 5451367
    [No Abstract]   [Full Text] [Related]  

  • 20. Equilibrium dialysis of ions in nystatin-treated red cells.
    Cass A; Dalmark M
    Nat New Biol; 1973 Jul; 244(132):47-9. PubMed ID: 4515993
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.