These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 4406109)

  • 21. Is it possible to predict the clinical effects of neuroleptics from animal data? Part V: From haloperidol and pipamperone to risperidone.
    Janssen PA; Awouters FH
    Arzneimittelforschung; 1994 Mar; 44(3):269-77. PubMed ID: 7514873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioural correlates to the dopamine D-1 and D-2 antagonists.
    Christensen AV; Arnt J; Hyttel J; Svendsen O
    Pol J Pharmacol Pharm; 1984; 36(2-3):249-64. PubMed ID: 6147830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofluperol in rats, and its relationship with their neuroleptic activity.
    Janssen PA; Allewijn FT
    Arzneimittelforschung; 1969 Feb; 19(2):199-208. PubMed ID: 5818759
    [No Abstract]   [Full Text] [Related]  

  • 24. Synthesis and cataleptic effects of optically active dihydrohaloperidols and dihydrobromoperidols.
    Takeshita M; Miura M; Hongo T; Ohkubo T; Sugawara K; Kosaka K; Takeshita Y; Araki T; Oshima Y
    Chirality; 1997; 9(5-6):443-5. PubMed ID: 9329176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of repeated haloperidol and apomorphine administration on the development of tolerance for catalepsy and dopamine receptor hypersensitivity in mice].
    Zharkovskiĭ AM; Matvienko OA; Nurk AM
    Biull Eksp Biol Med; 1984 Oct; 98(10):444-6. PubMed ID: 6541951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? IV. An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamine-or apomorphine-induced "Cheroing" and "agitation" in rats.
    Janssen PA; Niemegeers CJ; Schellekens KH; Lenaerts FM
    Arzneimittelforschung; 1967 Jul; 17(7):841-54. PubMed ID: 5632842
    [No Abstract]   [Full Text] [Related]  

  • 27. Neuropharmacological profile of MD 790501, a new benzamide derivative.
    Jalfre M; Bucher B; Dorme N; Mocquet G; Porsolt RD
    Arch Int Pharmacodyn Ther; 1983 Aug; 264(2):232-56. PubMed ID: 6139097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 4'-Fluoro-4-(1,4,5,6-tetrahydroazepinol[4,5-b]indol-3(2H)-yl)butyrophenones.
    Hester JB; Rudzik AD; Keasling HH; Veldkamp W
    J Med Chem; 1970 Jan; 13(1):23-6. PubMed ID: 5460894
    [No Abstract]   [Full Text] [Related]  

  • 29. Significance of dopamine receptor activity in dl-p-methoxyamphetamine- and d-amphetamine-induced locomotor activity.
    Tseng LF; Loh HH
    J Pharmacol Exp Ther; 1974 Jun; 189(3):717-24. PubMed ID: 4858403
    [No Abstract]   [Full Text] [Related]  

  • 30. The influence of various neuroleptic drugs on noise escape response in rats.
    Niemegeers CJ; Verbruggen FJ; Janssen PA
    Psychopharmacologia; 1970; 18(3):249-59. PubMed ID: 5530581
    [No Abstract]   [Full Text] [Related]  

  • 31. Intrastriatal injection of quaternary butyrophenones and oxypertine: neuroleptic effect in rats.
    Fog R; Randrup A; Pakkenberg H
    Psychopharmacologia; 1971; 19(3):224-30. PubMed ID: 5105727
    [No Abstract]   [Full Text] [Related]  

  • 32. A possible participation of gonadotropin-releasing hormone in the neuroleptic and cataleptic effect of haloperidol.
    Umathe SN; Wanjari MM; Manna SS; Jain NS
    Neuropeptides; 2009 Jun; 43(3):251-7. PubMed ID: 19403167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential attenuation of some effects of haloperidol in rats given scopolamine.
    Setler P; Sarau H; McKenzie G
    Eur J Pharmacol; 1976 Sep; 39(1):117-26. PubMed ID: 986946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of tryptophan and valine administration on behavioral pharmacology of haloperidol.
    Ali O; Haleem DJ; Saify ZS; Kamil N; Obaid R; Ahmed SW
    Pak J Pharm Sci; 2005 Apr; 18(2):23-8. PubMed ID: 16431394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tolerance to behavioral effects of haloperidol.
    Campbell A; Baldessarini RJ
    Life Sci; 1981 Sep; 29(13):1341-6. PubMed ID: 7197320
    [No Abstract]   [Full Text] [Related]  

  • 36. [The influence of calcium channel blockers on the effects of haloperidol and phenamine in mice and rats].
    Kozlovskiĭ VL; Prakh'e IV; Kenunen OG
    Eksp Klin Farmakol; 1996; 59(3):12-5. PubMed ID: 8974575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of piracetam, a cyclic GABA analogue, on haloperidol-induced catalepsy in the rat.
    Balsara JJ; Bapat TR; Chandorkar AG
    Indian J Physiol Pharmacol; 1980; 24(3):227-32. PubMed ID: 7193183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roxindole: psychopharmacological profile of a dopamine D2 autoreceptor agonist.
    Bartoszyk GD; Harting J; Minck KO
    J Pharmacol Exp Ther; 1996 Jan; 276(1):41-8. PubMed ID: 8558454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of new arylanalogs of ketamine.
    Burak K; Lipnicka U; Orszańska H; Rykowski Z; Witkiewicz K; Wrzesień J; Bogdal M; Krzywasiński L; Borkowska B
    Farmaco Sci; 1985 Apr; 40(4):285-98. PubMed ID: 4040474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological properties of substituted gamma-butyrolactones. I. The effects on the central nervous system.
    Sieroslawska J; Hano J; Sypniewska M; Czarnecki R; Chojnacka-Wójcik E; Harasiewicz A
    Pol J Pharmacol Pharm; 1973; 25(1):1-16. PubMed ID: 4798097
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.