BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 4407014)

  • 21. Growth of Candida albicans on hydrocarbons: influence on lipids and sterols.
    Sorkhoh NA; Ghannoum MA; Ibrahim AS; Stretton RJ; Radwan SS
    Microbios; 1990; 64(260-261):159-71. PubMed ID: 2084494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrocarbons disposition, lipid content, and fatty acid composition in trout after long-term dietary exposure to n-alkanes.
    Cravedi JP; Tulliez JE
    Environ Res; 1983 Dec; 32(2):398-413. PubMed ID: 6641671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1.
    Park MO
    J Bacteriol; 2005 Feb; 187(4):1426-9. PubMed ID: 15687207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach.
    Naether DJ; Slawtschew S; Stasik S; Engel M; Olzog M; Wick LY; Timmis KN; Heipieper HJ
    Appl Environ Microbiol; 2013 Jul; 79(14):4282-93. PubMed ID: 23645199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35.
    Radwan SS; Sorkhoh NA; Felzmann H; El-Desouky AF
    J Appl Bacteriol; 1996 Apr; 80(4):370-4. PubMed ID: 8849639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of carbon source on the level and composition of ceramides of the Candida lipolytica yeast.
    Rupcić J; Mesarić M; Marić V
    Appl Microbiol Biotechnol; 1998 Nov; 50(5):583-8. PubMed ID: 9866177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biochemistry of the developmental cycle of Triatoma infestans. VII. Lipid composition of the cuticle surface extracted with hexane].
    Juárez P; Brenner RR; Labayén IL; Gros EG
    Acta Physiol Pharmacol Latinoam; 1985; 35(2):223-36. PubMed ID: 2938407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM; Phelps CD; Young LY
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Degradation of hydrocarbons in the presence of other organic substances by bacteria isolated from seawater].
    Le Petit J; Tagger S
    Can J Microbiol; 1976 Nov; 22(11):1654-7. PubMed ID: 974913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V; Cravo-Laureau C; Méou A; Raphel D; Garzino F; Hirschler-Réa A
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064.
    Curragh H; Flynn O; Larkin MJ; Stafford TM; Hamilton JT; Harper DB
    Microbiology (Reading); 1994 Jun; 140 ( Pt 6)():1433-42. PubMed ID: 8081504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of alkanes to internal monoalkenes by a Nocardia.
    Abbott BJ; Casida LE
    J Bacteriol; 1968 Oct; 96(4):925-30. PubMed ID: 5686017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons.
    Walker JD; Cooney JJ
    Appl Microbiol; 1973 Nov; 26(5):705-8. PubMed ID: 4762391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of lipid and fatty acids during growth of Aspergillus terreus on hydrocarbon substrates.
    Kumar AK; Vatsyayan P; Goswami P
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1293-300. PubMed ID: 19507060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isolation and study of a new marine bacterium growing on hydrocarbons. I. Physiological study (author's transl)].
    Bertrand JC; Mutafschiev S; Henkel HG; Bazin H; Azoulay E
    Ann Microbiol (Paris); 1976 Oct; 127B(3):373-91. PubMed ID: 1020874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi.
    Murphy GL; Perry JJ
    J Bacteriol; 1984 Dec; 160(3):1171-4. PubMed ID: 6501228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of aliphatic alcohols and acids by yeasts capable and incapable of growth on n-alkanes.
    Ermakova IT; Lozinov AB
    Mikrobiologiia; 1976 JUL-AUG; 45(4):640-5. PubMed ID: 790100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regiospecific internal desaturation of aliphatic compounds by a mutant Rhodococcus strain.
    Koike K; Ara K; Adachi S; Takigawa H; Mori H; Inoue S; Kimura Y; Ito S
    Appl Environ Microbiol; 1999 Dec; 65(12):5636-8. PubMed ID: 10584034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.