These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 4407017)

  • 1. L-Arabinose metabolism in Rhizobium japonicum.
    Pedrosa FO; Zancan GT
    J Bacteriol; 1974 Jul; 119(1):336-8. PubMed ID: 4407017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-keto-3-deoxyl-L-arabonate aldolase and its role in a new pathway of L-arabinose degradation.
    Dahms AS; Anderson RL
    Biochem Biophys Res Commun; 1969 Aug; 36(5):809-14. PubMed ID: 5808295
    [No Abstract]   [Full Text] [Related]  

  • 3. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.
    Duncan MJ; Fraenkel DG
    J Bacteriol; 1979 Jan; 137(1):415-9. PubMed ID: 762018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase, and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism. Novel evolutionary insight into sugar metabolism.
    Watanabe S; Shimada N; Tajima K; Kodaki T; Makino K
    J Biol Chem; 2006 Nov; 281(44):33521-36. PubMed ID: 16950779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups.
    Martínez-De Drets G; Arias A
    J Bacteriol; 1972 Jan; 109(1):467-70. PubMed ID: 4400417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gluconate catabolism in Rhizobium japonicum.
    Keele BB; Hamilton PB; Elkan GH
    J Bacteriol; 1970 Mar; 101(3):698-704. PubMed ID: 5438044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar catabolism in Aquaspirillum gracile.
    Laughon BE; Krieg NR
    J Bacteriol; 1974 Sep; 119(3):691-7. PubMed ID: 4369249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.
    Sutter JM; Johnsen U; Schönheit P
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glucose catabolism of the genus Brucella. II. Cell-free studies with B. abortus (S-19).
    Robertson DC; McCullough WG
    Arch Biochem Biophys; 1968 Sep; 127(1):445-56. PubMed ID: 4235225
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of D-arabinose by Escherichia coli B-r.
    Boulter J; Gielow B; McFarland M; Lee N
    J Bacteriol; 1974 Feb; 117(2):920-3. PubMed ID: 4359656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate metabolism in Agrobacterium tumefaciens.
    Arthur LO; Bulla LA; Julian GS; Nakamura LK
    J Bacteriol; 1973 Oct; 116(1):304-13. PubMed ID: 4745418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens.
    Chang YF; Feingold DS
    J Bacteriol; 1970 Apr; 102(1):85-96. PubMed ID: 4314480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative study of the polyol dehydrogenases of Candida tropicalis X9, growing on D-xylose, and of its mutant capable of growing on L-arabinose].
    Shakhova IK
    Mikrobiologiia; 1973; 42(1):99-106. PubMed ID: 4151661
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of D-arabinose: a new pathway in Escherichia coli.
    LeBlanc DJ; Mortlock RP
    J Bacteriol; 1971 Apr; 106(1):90-6. PubMed ID: 4928018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme polymorphism and metabolism.
    Johnson GB
    Science; 1974 Apr; 184(4132):28-37. PubMed ID: 4360954
    [No Abstract]   [Full Text] [Related]  

  • 16. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae.
    Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of 4-keto-D-aldopentoses and 4-pentulosonates (4-keto-D-pentonates) with unidentified membrane-bound enzymes from acetic acid bacteria.
    Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2011; 75(9):1801-6. PubMed ID: 21897028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Fucose metabolism in a pseudomonad. IV. Cleavage of 2-keto-3-deoxy-D-fuconate to pyruvate and D-lactaldehyde by 2-keto-3-deoxy-L-arabonate aldolase.
    Dahms AS; Anderson RL
    J Biol Chem; 1972 Apr; 247(7):2238-41. PubMed ID: 5016652
    [No Abstract]   [Full Text] [Related]  

  • 19. Properties of enzymes involved in D-galactonate catabolism in fungi.
    Elshafei AM; Mohawed SM; Ammar MS; Abdel-Fatah OM
    Antonie Van Leeuwenhoek; 1995; 67(2):211-6. PubMed ID: 7771768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of some polyols by Rhizobium meliloti.
    Martinez De Drets G; Arias A
    J Bacteriol; 1970 Jul; 103(1):97-103. PubMed ID: 5423374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.