BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4407318)

  • 1. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri.
    Kröger A
    Biochim Biophys Acta; 1974 May; 347(2):273-89. PubMed ID: 4407318
    [No Abstract]   [Full Text] [Related]  

  • 2. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri.
    Kröger A; Dadák V; Klingenberg M; Diemer F
    Eur J Biochem; 1971 Aug; 21(3):322-33. PubMed ID: 4328123
    [No Abstract]   [Full Text] [Related]  

  • 3. Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria.
    Strøm AR; Olafsen JA; Larsen H
    J Gen Microbiol; 1979 Jun; 112(2):315-20. PubMed ID: 479836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transport of Krebs-cycle intermediates in Azotobacter vinelandii under various metabolic conditions.
    Postma PW; Cools A; van Dam K
    Biochim Biophys Acta; 1973 Aug; 318(1):91-104. PubMed ID: 4747078
    [No Abstract]   [Full Text] [Related]  

  • 5. [Ferricyanide and fumarate-reducing enzymes in the mitochondria of helminths].
    Benediktov II
    Angew Parasitol; 1972 Feb; 13(1):28-35. PubMed ID: 5053174
    [No Abstract]   [Full Text] [Related]  

  • 6. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fumarate reduction in Proteus mirabilis.
    Van der Beek EG; Oltmann LF; Stouthamer AH
    Arch Microbiol; 1976 Nov; 110(23):195-206. PubMed ID: 189721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Respiration coupled with phosphorylation in the tissue of the lumbar region of the spinal cord using different substrates].
    Dvoretskiĭ AI; Reva AD
    Biull Eksp Biol Med; 1969 Jun; 67(6):60-2. PubMed ID: 4321124
    [No Abstract]   [Full Text] [Related]  

  • 9. Proton translocation coupled to electron flow from endogenous substrates to fumarate in anaerobically grown Escherichia coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1977 Apr; 164(1):265-7. PubMed ID: 18144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective respiration and oxidative phosphorylation in muscle mitochondria of hamsters in the late stages of hereditary muscular dystrophy.
    Jacobson BE; Blanchaer MC; Wrogemann K
    Can J Biochem; 1970 Sep; 48(9):1037-42. PubMed ID: 5475465
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin.
    Macy J; Probst I; Gottschalk G
    J Bacteriol; 1975 Aug; 123(2):436-42. PubMed ID: 1150622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Action of hyperbaric oxygen on metabolism and alkaline ionic distribution of mammal cerebral cortex in vitro].
    Joanny P; Corriol J; Tong-Viet H
    J Physiol (Paris); 1968; 60 Suppl 2():472. PubMed ID: 5734994
    [No Abstract]   [Full Text] [Related]  

  • 13. The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study.
    Ingledew WJ
    J Gen Microbiol; 1983 Jun; 129(6):1651-9. PubMed ID: 6313851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    DEIBEL RH; KVETKAS MJ
    J Bacteriol; 1964 Oct; 88(4):858-64. PubMed ID: 14219047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tricarboxylic acid cycle and glycolysis in relation to ion transport by the ciliary body.
    Riley MV
    Biochem J; 1966 Mar; 98(3):898-902. PubMed ID: 5911534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of lysozyme on bacterial electron transport systems.
    Shah SB; King HK
    J Gen Microbiol; 1966 Jul; 44(1):1-13. PubMed ID: 4290564
    [No Abstract]   [Full Text] [Related]  

  • 17. Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport.
    Stenberg E; Styrvold OB; Strøm AR
    J Bacteriol; 1982 Jan; 149(1):22-8. PubMed ID: 6798018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth yield and energy generation in anaerobically-grown Campylobacter spec.
    Laanbroek HJ; Veldkamp H
    Arch Microbiol; 1979 Jan; 120(1):47-51. PubMed ID: 426598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 20. [The effect of penicillin and some semisynthetic penicillins on the respiratory chain enzymes of Staphylococcus aureus 209-P].
    Torbochkina LI; Navol'neva IN
    Biokhimiia; 1967; 32(1):133-43. PubMed ID: 4298437
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.