These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4407362)

  • 1. The gelation of deoxyhemoglobin S in erythrocytes as detected by transverse water proton relazation measurements.
    Cottam GL; Valentine KM; Yamaoka K; Waterman MR
    Arch Biochem Biophys; 1974 Jun; 162(2):487-92. PubMed ID: 4407362
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates.
    Thompson BC; Waterman MR; Cottam GL
    Arch Biochem Biophys; 1975 Jan; 166(1):193-200. PubMed ID: 1122135
    [No Abstract]   [Full Text] [Related]  

  • 3. Spin-label studies at F9(93)beta of deoxyhemoglobin S aggregation.
    Yamaoka K; Cottam GL; Waterman MR
    Biochem Biophys Res Commun; 1974 Jun; 58(4):1058-65. PubMed ID: 4366205
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of pH, carbamylation and other hemoglobins on deoxyhemoglobin S aggregation inside intact erythrocytes as detected by proton relaxation rate measurements.
    Chuang AH; Waterman MR; Yamaoka K; Cottam L
    Arch Biochem Biophys; 1975 Mar; 167(1):145-50. PubMed ID: 236726
    [No Abstract]   [Full Text] [Related]  

  • 5. Carbon-13-proton nuclear magnetic double-resonance study of deoxyhemoglobin S gelation.
    Sutherland JW; Egan W; Schechter AN; Torchia DA
    Biochemistry; 1979 May; 18(9):1797-803. PubMed ID: 435485
    [No Abstract]   [Full Text] [Related]  

  • 6. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence.
    Zipp A; James TL; Kuntz ID; Shohet SB
    Biochim Biophys Acta; 1976 Apr; 428(2):291-303. PubMed ID: 1276160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin.
    Malfa R; Steinhardt J
    Biochem Biophys Res Commun; 1974 Aug; 59(3):887-93. PubMed ID: 4411783
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the mechanism of action of cyanate in sickle cell disease. Oxygen affinity and gelling properties of hemoglobin S carbamylated on specific chains.
    Nigen AM; Njikam N; Lee CK; Manning JM
    J Biol Chem; 1974 Oct; 249(20):6611-6. PubMed ID: 4421180
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of pH, 2,3-diphosphoglycerate and salts on gelation of sickle cell deoxyhemoglobin.
    Briehl RW; Ewert S
    J Mol Biol; 1973 Nov; 80(3):445-58. PubMed ID: 4762563
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanical stability of hemoglobin subunits: an abnormality in betaS-subunits of sickle hemoglobin.
    Asakura T; Adachi K; Sono M; Friedman S; Schwartz E
    Biochem Biophys Res Commun; 1974 Apr; 57(3):780-6. PubMed ID: 4827832
    [No Abstract]   [Full Text] [Related]  

  • 11. INTRAERYTHROCYTIC HEMOGLOBIN CRYSTALS IN SICKLE CELL-HEMOGLOBIN C DISEASE.
    DIGGS LW; BELL A
    Blood; 1965 Feb; 25():218-23. PubMed ID: 14267697
    [No Abstract]   [Full Text] [Related]  

  • 12. Noncovalent modification of deoxyhemoglobin S solubility and erythrocyte sickling.
    Waterman MR; Yamaoka K; Dahm L; Taylor J; Cottam GL
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2222-5. PubMed ID: 4526343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the carbamylation of the amino groups of sickle cell hemoglobin by cyanate.
    Lee CK; Manning JM
    J Biol Chem; 1973 Aug; 248(16):5861-5. PubMed ID: 4723918
    [No Abstract]   [Full Text] [Related]  

  • 15. Interactions of other hemoglobin variants with sickle-cell hemoglobin.
    Ranney HM
    N Engl J Med; 1970 Dec; 283(26):1462-3. PubMed ID: 5481781
    [No Abstract]   [Full Text] [Related]  

  • 16. Hemoglobin electrophoresis on cellulose acetate.
    Rosenbaum DL
    Am J Med Sci; 1966 Dec; 252(6):726-31. PubMed ID: 5954675
    [No Abstract]   [Full Text] [Related]  

  • 17. THREE INHERITED INTRA-ERYTHROCYTIC DEFECTS: HEREDITARY SPHEROCYTOSIS, HB S AND HB C.
    THOMPSON RB; ROBERTSON MG
    Acta Haematol; 1964 Oct; 32():233-8. PubMed ID: 14252557
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative studies of ferritinlike iron in erythrocytes of thalassemia, sickle-cell anemia, and hemoglobin Hammersmith with Mössbauer spectroscopy.
    Bauminger ER; Cohen SG; Ofer S; Rachmilewitz EA
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):939-43. PubMed ID: 284419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparisons of the kinetic stability of normal and sickle cell human hemoglobins at extremes of pH.
    Jones DD; McGrath WP; Carroll D; Steinhardt J
    Biochemistry; 1973 Sep; 12(20):3818-24. PubMed ID: 4745648
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.