These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4407737)

  • 1. Deamidation of glutaminyl residues: dependence on pH, temperature, and ionic strength.
    Scotchler JW; Robinson AB
    Anal Biochem; 1974 May; 59(1):319-22. PubMed ID: 4407737
    [No Abstract]   [Full Text] [Related]  

  • 2. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides.
    Robinson AB; Scotchler JW; McKerrow JH
    J Am Chem Soc; 1973 Nov; 95(24):8156-9. PubMed ID: 4762548
    [No Abstract]   [Full Text] [Related]  

  • 3. Primary sequence dependence of the deamidation of rabbit muscle aldolase.
    McKerrow JH; Robinson AB
    Science; 1974 Jan; 183(4120):85. PubMed ID: 4808790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides.
    Robinson NE; Robinson ZW; Robinson BR; Robinson AL; Robinson JA; Robinson ML; Robinson AB
    J Pept Res; 2004 May; 63(5):426-36. PubMed ID: 15140160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures.
    McKerrow JH; Robinson AB
    Anal Biochem; 1971 Aug; 42(2):565-8. PubMed ID: 5118591
    [No Abstract]   [Full Text] [Related]  

  • 6. Substrate specificity of glutaminyl cyclases from plants and animals.
    Schilling S; Manhart S; Hoffmann T; Ludwig HH; Wasternack C; Demuth HU
    Biol Chem; 2003 Dec; 384(12):1583-92. PubMed ID: 14719800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new enzymic method for determination of glutamine in proteins or peptides using peptidoglutaminases.
    Kikuchi M
    Anal Biochem; 1974 May; 59(1):83-90. PubMed ID: 4407729
    [No Abstract]   [Full Text] [Related]  

  • 8. Evolution and the distribution of glutaminyl and asparaginyl residues in proteins.
    Robinson AB
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):885-8. PubMed ID: 4522799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides.
    Brun F; Toulmé JJ; Hélène C
    Biochemistry; 1975 Feb; 14(3):558-63. PubMed ID: 234245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state.
    Li B; Gorman EM; Moore KD; Williams T; Schowen RL; Topp EM; Borchardt RT
    J Pharm Sci; 2005 Mar; 94(3):666-75. PubMed ID: 15668945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon.
    Joshi AB; Kirsch LE
    Int J Pharm; 2004 Apr; 273(1-2):213-9. PubMed ID: 15010145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threonine deaminase from extremely halophilic bacteria. Cooperative substrate kinetics and salt dependence.
    Lieberman MM; Lanyi JK
    Biochemistry; 1972 Jan; 11(2):211-6. PubMed ID: 4333202
    [No Abstract]   [Full Text] [Related]  

  • 14. A kinetic study of the reaction between cytochrome c peroxidase and hydrogen peroxide. Dependence on pH and ionic strength.
    Loo S; Erman JE
    Biochemistry; 1975 Jul; 14(15):3467-70. PubMed ID: 238593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the rates of deamidation, diketopiperazine formation and oxidation in recombinant human vascular endothelial growth factor and model peptides.
    Goolcharran C; Cleland JL; Keck R; Jones AJ; Borchardt RT
    AAPS PharmSci; 2000; 2(1):E5. PubMed ID: 11741221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quaternary structure of bovine alpha-crystallin. Effects of variation in alkaline pH, ionic strength, temperature and calcium ion concentration.
    Siezen RJ; Bindels JG; Hoenders HJ
    Eur J Biochem; 1980 Oct; 111(2):435-44. PubMed ID: 7460906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and thermodynamics of the reactions of acyl-papains. Effects of pH, temperature, solvents, ionic strength, and added nucleophiles.
    Hindle PM; Kirsch JF
    Biochemistry; 1971 Sep; 10(20):3700-7. PubMed ID: 4999529
    [No Abstract]   [Full Text] [Related]  

  • 18. The temperature and pH dependence of conformational transitions of the chromatin subunit.
    Gordon VC; Schumaker VN; Olins DE; Knobler CM; Horwitz J
    Nucleic Acids Res; 1979 Aug; 6(12):3845-58. PubMed ID: 40207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS.
    Huang L; Lu J; Wroblewski VJ; Beals JM; Riggin RM
    Anal Chem; 2005 Mar; 77(5):1432-9. PubMed ID: 15732928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine deamidation of a recombinant monoclonal antibody.
    Liu H; Gaza-Bulseco G; Chumsae C
    Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4081-8. PubMed ID: 19021137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.