These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 441113)

  • 21. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace.
    Gailey RS; Wenger MA; Raya M; Kirk N; Erbs K; Spyropoulos P; Nash MS
    Prosthet Orthot Int; 1994 Aug; 18(2):84-91. PubMed ID: 7991365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis and evaluation of functional status of lower extremity amputee-appliance systems: an integrated approach.
    Ganguli S
    Biomed Eng; 1976 Nov; 11(11):380-2. PubMed ID: 990361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of prosthetic mass distribution on metabolic costs and walking symmetry.
    Smith JD; Martin PE
    J Appl Biomech; 2013 Jun; 29(3):317-28. PubMed ID: 22977207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of alterations in prosthetic shank mass on the metabolic costs of ambulation in above-knee amputees.
    Czerniecki JM; Gitter A; Weaver K
    Am J Phys Med Rehabil; 1994; 73(5):348-52. PubMed ID: 7917165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy cost of ambulation in health and disability: a literature review.
    Fisher SV; Gullickson G
    Arch Phys Med Rehabil; 1978 Mar; 59(3):124-33. PubMed ID: 148252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy cost of three-point crutch ambulation in fracture patients.
    Waters RL; Campbell J; Perry J
    J Orthop Trauma; 1987; 1(2):170-3. PubMed ID: 3506593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy cost of ambulation with crutches.
    Fisher SV; Patterson RP
    Arch Phys Med Rehabil; 1981 Jun; 62(6):250-6. PubMed ID: 7235917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy costs & performance of transtibial amputees & non-amputees during walking & running.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions.
    Starholm IM; Gjovaag T; Mengshoel AM
    Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A
    Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study.
    Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K
    Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy cost of walking in transfemoral amputees: Comparison between Marlo Anatomical Socket and Ischial Containment Socket.
    Traballesi M; Delussu AS; Averna T; Pellegrini R; Paradisi F; Brunelli S
    Gait Posture; 2011 Jun; 34(2):270-4. PubMed ID: 21684165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of aerobic capacity and walking economy of unilateral transfemoral amputees.
    Gjovaag T; Starholm IM; Mirtaheri P; Hegge FW; Skjetne K
    Prosthet Orthot Int; 2014 Apr; 38(2):140-7. PubMed ID: 23798044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The efficacy of physiological cost index (PCI) measurement of a subject walking with an Intelligent Prosthesis.
    Chin T; Sawamura S; Fujita H; Nakajima S; Ojima I; Oyabu H; Nagakura Y; Otsuka H; Nakagawa A
    Prosthet Orthot Int; 1999 Apr; 23(1):45-9. PubMed ID: 10355642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.