BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4412409)

  • 1. Chemical modification of one carboxyl-group of papain abolishes the catalytic activity of the enzyme.
    Löffler HG; Schneider F
    FEBS Lett; 1974 Sep; 45(1):79-81. PubMed ID: 4412409
    [No Abstract]   [Full Text] [Related]  

  • 2. The chemical modification of papain with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.
    Perfetti RB; Anderson CD; Hall PL
    Biochemistry; 1976 Apr; 15(8):1735-43. PubMed ID: 1268194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes in papain during catalysis and ligand binding.
    Fink AL; Gwyn C
    Biochemistry; 1974 Mar; 13(6):1190-5. PubMed ID: 4814720
    [No Abstract]   [Full Text] [Related]  

  • 4. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment.
    Salih E; Malthouse JP; Kowlessur D; Jarvis M; O'Driscoll M; Brocklehurst K
    Biochem J; 1987 Oct; 247(1):181-93. PubMed ID: 2825655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of carboxyl groups in the activity of pancreatic lipase.
    Dufour C; Sémériva M; Desnuelle P
    Biochim Biophys Acta; 1973 Nov; 327(1):101-13. PubMed ID: 4770735
    [No Abstract]   [Full Text] [Related]  

  • 6. 2-Chloromethyl-4-nitrophenyl (N-carbobenzoxy)glycinate. A new reagent designed to introduce an environmentally sensitive conformational probe near the active site of papain.
    Mole JE; Horton HR
    Biochemistry; 1973 Dec; 12(26):5278-85. PubMed ID: 4760492
    [No Abstract]   [Full Text] [Related]  

  • 7. Derivatisation of carboxyl groups of tobacco mosaic virus with cystamine.
    King L; Leberman R
    Biochim Biophys Acta; 1973 Oct; 322(2):279-93. PubMed ID: 4765092
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.
    Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe.
    Brocklehurst K; Kowlessur D; Patel G; Templeton W; Quigley K; Thomas EW; Wharton CW; Willenbrock F; Szawelski RJ
    Biochem J; 1988 Mar; 250(3):761-72. PubMed ID: 2839145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of signalling and non-signalling binding contributions to enzyme reactivity. Alternative combinations of binding interactions provide for change in transition-state geometry in reactions of papain.
    Kowlessur D; Topham CM; Thomas EW; O'Driscoll M; Templeton W; Brocklehurst K
    Biochem J; 1989 Mar; 258(3):755-64. PubMed ID: 2730566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: identification of carboxyl groups protected by MgATP and inhibitor peptides.
    Buechler JA; Taylor SS
    Biochemistry; 1990 Feb; 29(7):1937-43. PubMed ID: 2331473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proflavine interactions with papain and ficin. II. Effects of dye binding upon reversible inhibition.
    Hall PL; Anderson CD
    Biochemistry; 1974 May; 13(10):2087-92. PubMed ID: 4826886
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic specificity in papain-catalysed hydrolyses.
    Lowe G; Yuthavong Y
    Biochem J; 1971 Aug; 124(1):107-15. PubMed ID: 5126466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of papain by N-ethylmaleimide.
    Brubacher LJ; Glick BR
    Biochemistry; 1974 Feb; 13(5):915-20. PubMed ID: 4813371
    [No Abstract]   [Full Text] [Related]  

  • 15. A kinetic analysis of the enhanced catalytic efficiency of papain modified by 2-hydroxy-5-nitrobenzylation.
    Mole JE; Horton HR
    Biochemistry; 1973 Dec; 12(26):5285-9. PubMed ID: 4760493
    [No Abstract]   [Full Text] [Related]  

  • 16. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics.
    Brocklehurst K; Brocklehurst SM; Kowlessur D; O'Driscoll M; Patel G; Salih E; Templeton W; Thomas E; Topham CM; Willenbrock F
    Biochem J; 1988 Dec; 256(2):543-58. PubMed ID: 3223929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aryl alpha-haloalkyl ketoximes as enzyme modifying agents. The reaction of alpha-haloacetophenone oximes with the active site of papain.
    Furlanetto RW; Mochizuki M; Kaiser ET
    Biochem Biophys Res Commun; 1974 May; 58(1):192-6. PubMed ID: 4598442
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of the kinetics of the papain-catalyzed hydrolysis of glycine- and alanine-based esters and thiono esters.
    Storer AC; Angus RH; Carey PR
    Biochemistry; 1988 Jan; 27(1):264-8. PubMed ID: 3349032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition.
    Templeton W; Kowlessur D; Thomas EW; Topham CM; Brocklehurst K
    Biochem J; 1990 Mar; 266(3):645-51. PubMed ID: 2327953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism in papain family of cysteine peptidases.
    Storer AC; Ménard R
    Methods Enzymol; 1994; 244():486-500. PubMed ID: 7845227
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.