These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 4415528)
1. Reinvestigation of a "nonadditive" quantitative structure-activity relationship. Cammarata A; Bustard TM J Med Chem; 1974 Sep; 17(9):981-5. PubMed ID: 4415528 [No Abstract] [Full Text] [Related]
2. [Prediction of the hazard parameters of benzene phenyl halide derivatives by the electron nuclear structure of the compounds]. Liubimov AV; Aĭnbinder NE Gig Sanit; 1986 Jul; (7):19-23. PubMed ID: 3758700 [No Abstract] [Full Text] [Related]
3. Analysis and prediction of structure-reactive toxicity relationships of substituted aromatic compounds. Liu ZT; Wang LS; Chen SP; Li W; Yu HX Bull Environ Contam Toxicol; 1996 Sep; 57(3):421-5. PubMed ID: 8672057 [No Abstract] [Full Text] [Related]
4. Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: a hierarchical QSAR approach. Gute BD; Basak SC SAR QSAR Environ Res; 1997; 7(1-4):117-31. PubMed ID: 9501507 [TBL] [Abstract][Full Text] [Related]
5. [Use of fragment analysis of aromatic compounds for predicting toxicologic and hygienic parameters]. Kurliandskiĭ BA; Shitikov VK; Kabachenko VA; Tikhonov VN Gig Tr Prof Zabol; 1986 Mar; (3):37-40. PubMed ID: 3699498 [No Abstract] [Full Text] [Related]
6. Regression comparisons of aquatic toxicity of benzene derivatives: Tetrahymena pyriformis and Rana japonica. Gagliardi SR; Schultz TW Bull Environ Contam Toxicol; 2005 Feb; 74(2):256-62. PubMed ID: 15841965 [No Abstract] [Full Text] [Related]
7. Acute toxicity of benzene derivatives to the tadpoles (Rana japonica) and QSAR analyses. Huang H; Wang X; Ou W; Zhao J; Shao Y; Wang L Chemosphere; 2003 Dec; 53(8):963-70. PubMed ID: 14505719 [TBL] [Abstract][Full Text] [Related]
8. [Relation between the toxicity of molecules of industrial value and their physico-chemical properties: test of upper airway irritation applied to 4 chemical groups]. Muller J; Greff G Food Chem Toxicol; 1984 Aug; 22(8):661-4. PubMed ID: 6540741 [TBL] [Abstract][Full Text] [Related]
9. [Assessment of the mutagenic hazards of benzene and its derivatives]. Fel'dt EG Gig Sanit; 1985 Jul; (7):21-3. PubMed ID: 4043745 [No Abstract] [Full Text] [Related]
10. Response-surface analysis for the inhibition toxicity of benzene derivatives to yeast Saccharomyces cerevisiae. Wang X; Wang Y; Dai X; Wang L; Han S Bull Environ Contam Toxicol; 2002 Aug; 69(2):278-85. PubMed ID: 12107706 [No Abstract] [Full Text] [Related]
11. Applications of frontier molecular orbital energies in QSAR studies. Huang Q; Kong L; Wang L Bull Environ Contam Toxicol; 1996 May; 56(5):758-65. PubMed ID: 8661859 [No Abstract] [Full Text] [Related]
12. Holographic quantitative structure-activity relationship for prediction acute toxicity of benzene derivatives to the guppy (Poecilia reticulata). Huang H; Wang XD; Dai XL; Yu YJ; Wang LS J Environ Sci (China); 2004; 16(3):423-7. PubMed ID: 15272716 [TBL] [Abstract][Full Text] [Related]
13. Prediction of toxicity using quantitative structure-activity relationships. Dura G; Krasovski GN; Zholdakova ZI; Mayer G Arch Toxicol Suppl; 1985; 8():481-7. PubMed ID: 3868379 [TBL] [Abstract][Full Text] [Related]
14. A study on prediction of the bio-toxicity of substituted benzene based on artificial neural network. Gao DW; Wang P; Liang H; Peng YZ J Environ Sci Health B; 2003 Sep; 38(5):571-9. PubMed ID: 12929716 [TBL] [Abstract][Full Text] [Related]
15. Chemical structure and properties of selected benzene compounds in relation to biological activity. Freed VH; Haque R Environ Health Perspect; 1976 Feb; 13():23-6. PubMed ID: 1269503 [TBL] [Abstract][Full Text] [Related]
16. [Use of chemical structure--biological activity patterns to predict toxicity parameters of benzene derivatives]. Krasovskiĭ GN; Egorova NA; Zholdakova ZI Gig Sanit; 1979 Jun; (6):7-11. PubMed ID: 468004 [No Abstract] [Full Text] [Related]
17. Quantitative structure-activity relationships for the toxicity of substituted benzenes to Cyprinus carpio. Lu GH; Wang C; Yuan X; Lang PZ Biomed Environ Sci; 2005 Feb; 18(1):53-7. PubMed ID: 15861779 [TBL] [Abstract][Full Text] [Related]
18. Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. Mekenyan OG; Veith GD SAR QSAR Environ Res; 1993; 1(4):335-44. PubMed ID: 8790637 [TBL] [Abstract][Full Text] [Related]
19. Electronic, hydrophobic, and steric effects of binding of inhibitors to the horse liver alcohol dehydrogenase-reduced pyridine coenzyme binary complex. Sarma RH; Woronick CL Biochemistry; 1972 Jan; 11(2):170-9. PubMed ID: 4333201 [No Abstract] [Full Text] [Related]
20. The bone marrow clastogenicity of eight halogenated benzenes in male NMRI mice. Mohtashamipur E; Triebel R; Straeter H; Norpoth K Mutagenesis; 1987 Mar; 2(2):111-3. PubMed ID: 3331700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]