These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 44175)

  • 21. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes.
    Dodds KL
    Appl Environ Microbiol; 1989 Mar; 55(3):656-60. PubMed ID: 2648990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clostridium botulinum can grow and form toxin at pH values lower than 4.6.
    Raatjes GJ; Smelt JP
    Nature; 1979 Oct; 281(5730):398-9. PubMed ID: 39257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack.
    Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T
    J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of arginine in growth of Clostridium botulinum Okra B.
    Patterson-Curtis SI; Johnson EA
    Appl Environ Microbiol; 1992 Jul; 58(7):2334-7. PubMed ID: 1637170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres.
    Daifas DP; Smith JP; Blanchfield B; Austin JW
    J Food Prot; 1999 Apr; 62(4):349-55. PubMed ID: 10419207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine.
    Patterson-Curtis SI; Johnson EA
    Appl Environ Microbiol; 1989 Jun; 55(6):1544-8. PubMed ID: 2669631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultural and physiological characteristics of Clostridium botulinum type G and the susceptibility of certain animals to its toxin.
    Ciccarelli AS; Whaley DN; McCroskey LM; Gimenez DF; Dowell VR; Hatheway CL
    Appl Environ Microbiol; 1977 Dec; 34(6):843-8. PubMed ID: 74236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerobic growth and toxigenicity of Clostridium botulinum types A and B.
    Dezfulian M
    Folia Microbiol (Praha); 1999; 44(2):167-70. PubMed ID: 10588051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cl. botulinum type F toxin formation on non-meat nutrient media].
    Perova EV; Bulatova TI; Lukina LS
    Zh Mikrobiol Epidemiol Immunobiol; 1970 Sep; 47(9):46-51. PubMed ID: 4932823
    [No Abstract]   [Full Text] [Related]  

  • 32. Activation of a toxic component of Clostridium botulinum types C and D by trypsin.
    Eklund MW; Poysky FT
    Appl Microbiol; 1972 Jul; 24(1):108-13. PubMed ID: 4560464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Growth of Clostridium botulinum in media with garlic (Allium sativum)].
    Giménez MA; Solanes RE; Giménez DF
    Rev Argent Microbiol; 1988; 20(1):17-24. PubMed ID: 3051126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual toxin-producing strain of Clostridium botulinum type Bf isolated from a California patient with infant botulism.
    Barash JR; Arnon SS
    J Clin Microbiol; 2004 Apr; 42(4):1713-5. PubMed ID: 15071029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3.
    Graikoski JT; Kempe LL
    COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998
    [No Abstract]   [Full Text] [Related]  

  • 36. Immunodiffusion method for detection of type A Clostridium botulinum.
    Ferreira JL; Hamdy MK; Zapatka FA; Hebert WO
    Appl Environ Microbiol; 1981 Dec; 42(6):1057-61. PubMed ID: 6797350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The production of Clostridium botulinum toxin in mammalian, avian and piscine carrion.
    Smith GR; Turner A
    Epidemiol Infect; 1989 Jun; 102(3):467-71. PubMed ID: 2661255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conservative prediction of time to Clostridium botulinum toxin formation for use with time-temperature indicators to ensure the safety of foods.
    Skinner GE; Larkin JW
    J Food Prot; 1998 Sep; 61(9):1154-60. PubMed ID: 9766067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and toxin production by Clostridium botulinum in steamed rice aseptically packed under modified atmosphere.
    Kasai Y; Kimura B; Kawasaki S; Fukaya T; Sakuma K; Fujii T
    J Food Prot; 2005 May; 68(5):1005-11. PubMed ID: 15895734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil.
    Smith LD
    Appl Microbiol; 1975 Aug; 30(2):319-23. PubMed ID: 169734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.