These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4417500)

  • 1. Procabazine induced oxidative haemolysis: relationship in vivo red cell survival.
    Sponzo RW; Arseneau JC; Canellos GP
    Br J Haematol; 1974 Aug; 27(4):587-95. PubMed ID: 4417500
    [No Abstract]   [Full Text] [Related]  

  • 2. The in vitro action of dapsone and its derivatives on normal and G6PD-deficient red cells.
    Scott GL; Rasbridge MR
    Br J Haematol; 1973 Mar; 24(3):307-17. PubMed ID: 4713632
    [No Abstract]   [Full Text] [Related]  

  • 3. THE MECHANISM OF HAEMOLYSIS IN FAVISM. SOME ANALOGY IN THE ACTIVITY OF PRIMAQUINE AND FAVA JUICE.
    PANIZON F; ZACCHELLO F
    Acta Haematol; 1965 Mar; 33():129-38. PubMed ID: 14326932
    [No Abstract]   [Full Text] [Related]  

  • 4. Hemolysis by diphenylsulfones: comparative effects of DDS and hydroxylamine-DDS.
    Glader BE; Conrad ME
    J Lab Clin Med; 1973 Feb; 81(2):267-72. PubMed ID: 4683425
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of drugs and drug metabolites on erythrocytes from normal and glucose-6-phosphate dehydrogenase-deficient individuals.
    Fraser IM; Vesell ES
    Ann N Y Acad Sci; 1968 Jul; 151(2):777-94. PubMed ID: 4391843
    [No Abstract]   [Full Text] [Related]  

  • 6. Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: effect of deferoxamine.
    Vanella A; Campisi A; Castorina C; Sorrenti V; Attaguile G; Samperi P; Azzia N; Di Giacomo C; Schilirò G
    Pharmacol Res; 1991 Jul; 24(1):25-31. PubMed ID: 1946141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methemoglobin-dependent and plasma-stimulated experimental model of oxidative hemolysis.
    Benatti U; Morelli A; Damiani G; De Flora A
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1183-90. PubMed ID: 6810891
    [No Abstract]   [Full Text] [Related]  

  • 8. Red-cell catalase and the production of methaemoglobin, Heinz bodies and changes in osmotic fragility due to drugs.
    Tudhope GR; Leece SP
    Acta Haematol; 1971; 45(5):290-302. PubMed ID: 5000041
    [No Abstract]   [Full Text] [Related]  

  • 9. Protective effect of formate on GSH concentration and Heinz body formation: a preliminary model study.
    Rapoport S; Müller M; Siems W; Grieger M
    Haematologia (Budap); 1974; 8(1-4):127-34. PubMed ID: 4142616
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative haemolysis and Heinz body haemolytic anaemia.
    Gordon-Smith EC; White JM
    Br J Haematol; 1974 Apr; 26(4):513-7. PubMed ID: 4367628
    [No Abstract]   [Full Text] [Related]  

  • 11. Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats.
    Kraus A; Roth HP; Kirchgessner M
    J Nutr; 1997 Jul; 127(7):1290-6. PubMed ID: 9202082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of haemoglobin in the protection of reduced glutathione against destruction by 'oxidant' drugs.
    Beutler E; Mathai C
    Nature; 1965 Mar; 205(976):1121-2. PubMed ID: 5833219
    [No Abstract]   [Full Text] [Related]  

  • 13. Red cell metabolism and haemolysis in patients on dialysis.
    Blumberg A; Marti HR
    Proc Eur Dial Transplant Assoc; 1972; 9():91-6. PubMed ID: 4668955
    [No Abstract]   [Full Text] [Related]  

  • 14. STUDIES ON THE OSMOTIC FRAGILITY OF NORMAL HUMAN ERYTHROCYTES. V. THE CONCENTRATION OF GLUTATHIONE DURING INCUBATION AND ITS RELATION TO CHANGES OF THE OSMOTIC FRAGILITY.
    MORTENSEN E
    Acta Med Scand; 1964 Apr; 175():515-22. PubMed ID: 14153253
    [No Abstract]   [Full Text] [Related]  

  • 15. [Influence of chloroquine and primaquine on red cell metabolism (author's transl)].
    Waller HD; Lüer S; Benöhr HC
    Klin Wochenschr; 1973 Dec; 51(24):1185-90. PubMed ID: 4789326
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of acrylonitrile on hemoglobin and red cell metabolism.
    Farooqui MY; Ahmed AE
    J Toxicol Environ Health; 1983; 12(4-6):695-707. PubMed ID: 6668618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative patterns of 'in vitro' oxidative hemolysis of normal and glucose 6-phosphate dehydrogenase (G6PD)-deficient erythrocytes.
    Benatti U; Morelli A; Meloni T; Sparatore B; Salamino F; Michetti M; Melloni E; Pontremoli S; de Flora A
    FEBS Lett; 1981 Jun; 128(2):225-9. PubMed ID: 7262314
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of ethanol on the detoxification of hydrogen peroxide induced by ascorbic acid in normal erythrocytes and those with glucose-6-phosphate dehydrogenase deficiency].
    Coutinho V
    Sangre (Barc); 1984; 29(1):10-4. PubMed ID: 6719314
    [No Abstract]   [Full Text] [Related]  

  • 19. Potassium bromate causes cell lysis and induces oxidative stress in human erythrocytes.
    Ahmad MK; Amani S; Mahmood R
    Environ Toxicol; 2014 Feb; 29(2):138-45. PubMed ID: 22012894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Henna: a potential cause of oxidative hemolysis and neonatal hyperbilirubinemia.
    Zinkham WH; Oski FA
    Pediatrics; 1996 May; 97(5):707-9. PubMed ID: 8628611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.