These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 4418824)

  • 41. Iron bound to the high-affinity Mn-binding site of the oxygen-evolving complex shifts the pK of a component controlling electron transport via Y(Z).
    Semin BK; Seibert M
    Biochemistry; 2004 Jun; 43(21):6772-82. PubMed ID: 15157111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional heterogeneity of the transport iron compartment I. In vivo radioiron clearance from high and low saturated transferrin.
    Hahn D; Baviera B; Ganzoni AM
    Acta Haematol; 1975; 53(5):285-91. PubMed ID: 808069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin.
    Chen CY; Berish SA; Morse SA; Mietzner TA
    Mol Microbiol; 1993 Oct; 10(2):311-8. PubMed ID: 7934822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acquisition of iron from transferrin by Bordetella pertussis.
    Redhead K; Hill T
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):303-7. PubMed ID: 2037235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane coarctation by calcium as a regulator for bound enzymes.
    Horvath C; Sovak M
    Biochim Biophys Acta; 1973 Apr; 298(4):850-60. PubMed ID: 4729819
    [No Abstract]   [Full Text] [Related]  

  • 46. Supramolecular selective transport of Ca2+/Na+ by dicarboxylic ligands across bulk liquid membranes.
    Biancardi A; Marchelli R; Dossena A
    J Mol Recognit; 1992 Dec; 5(4):139-44. PubMed ID: 1339482
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes.
    Sun X; Baker HM; Ge R; Sun H; He QY; Baker EN
    Biochemistry; 2009 Jul; 48(26):6184-90. PubMed ID: 19463017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of morphine with cholesterol monolayers.
    Huidobro-Toro JP; Canessa M; Fischer S
    Biochim Biophys Acta; 1976 Jun; 436(1):237-41. PubMed ID: 6064
    [No Abstract]   [Full Text] [Related]  

  • 49. Energy-dependent accumulation of iron by isolated rat liver mitochondria. II. Relationship to the active transport of Ca2+.
    Romslo I; Flatmark T
    Biochim Biophys Acta; 1973 Oct; 325(1):38-46. PubMed ID: 4770731
    [No Abstract]   [Full Text] [Related]  

  • 50. Electrical properties of black membranes from oxidized cholesterol and a strongly bound protein fraction of human erythrocyte membranes.
    Lossen O; Brennecke R; Schubert D
    Biochim Biophys Acta; 1973 Dec; 330(2):132-40. PubMed ID: 4777222
    [No Abstract]   [Full Text] [Related]  

  • 51. Relationship of the photosensitivity of bilayer lipid membranes and the aqueous acceptor. Studies using complex ions of amino acids.
    Mangel M
    Biochim Biophys Acta; 1976 Feb; 419(3):404-10. PubMed ID: 1247568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of the structure and fluidity of phosphatidylglycerol bilayers by pH titration.
    Watts A; Harlos K; Maschke W; Marsh D
    Biochim Biophys Acta; 1978 Jun; 510(1):63-74. PubMed ID: 27215
    [No Abstract]   [Full Text] [Related]  

  • 53. [Iron metabolism in the yeast].
    Hospodar'ov DV; Lushchak VI
    Ukr Biokhim Zh (1999); 2005; 77(3):5-19. PubMed ID: 16566123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy-dependent accumulation of iron by isolated rabbit reticulocyte mitochondria.
    Romslo I
    Biochim Biophys Acta; 1974 Jul; 357(1):34-42. PubMed ID: 4413242
    [No Abstract]   [Full Text] [Related]  

  • 55. The role of PaAAC1 encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast Pseudozyma antarctica.
    Morita T; Ito E; Fukuoka T; Imura T; Kitamoto D
    Yeast; 2010 Jul; 27(7):379-88. PubMed ID: 20146402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzyme membrane model systems and their implication in biological research.
    Goldman R
    Biochimie; 1973; 55(8):953-66. PubMed ID: 4772297
    [No Abstract]   [Full Text] [Related]  

  • 57. Multi-site two-carrier transport comparison with enzyme kinetics.
    Borst-Pauwels GWFH
    J Theor Biol; 1974 Nov; 48(1):183-95. PubMed ID: 4456037
    [No Abstract]   [Full Text] [Related]  

  • 58. Drug transport through model membranes and its correlation with solubility parameters.
    Khalil SA; Martin AN
    J Pharm Sci; 1967 Oct; 56(10):1225-33. PubMed ID: 6059438
    [No Abstract]   [Full Text] [Related]  

  • 59. Transport across biological membranes: a rigorous test for the carrier hypothesis.
    Hoare DG
    J Membr Biol; 1973; 11(2):169-76. PubMed ID: 4781758
    [No Abstract]   [Full Text] [Related]  

  • 60. Comparison between the kinetics of heterogeneous and sequentially co-operative binding systems.
    Boeynaems JM; Cantraine FR
    J Theor Biol; 1980 Apr; 83(3):447-56. PubMed ID: 7412312
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.