These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 441915)

  • 1. A telemetric pressure sensor for ventricular shunt systems.
    Cosman ER; Zervas NT; Chapman PH; Cosman BJ; Arnold MA
    Surg Neurol; 1979 Apr; 11(4):287-94. PubMed ID: 441915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The changes of intracranial pressure after shunt surgery: measurements of pre- and postshunt ventricular fluid pressure with an implanted telemetric ICP sensor].
    Yamaguchi Y; Yamaguchi T; Yanaki T; Masuzawa T
    No Shinkei Geka; 1990 Feb; 18(2):175-82. PubMed ID: 2336146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial Pressure-Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir.
    Antes S; Stadie A; Müller S; Linsler S; Breuskin D; Oertel J
    World Neurosurg; 2018 Jan; 109():e642-e650. PubMed ID: 29054776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial pressure monitoring using a programmable pressure valve and a telemetric intracranial pressure sensor in a case of slit ventricle syndrome after multiple shunt revisions.
    Kamiryo T; Fujii Y; Kusaka M; Kashiwagi S; Ito H
    Childs Nerv Syst; 1991 Aug; 7(4):233-4. PubMed ID: 1933922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pressure-balanced radio-telemetry system for the measurement of intracranial pressure. A preliminary design report.
    Zervas NT; Cosman ER; Cosman BJ
    J Neurosurg; 1977 Dec; 47(6):899-911. PubMed ID: 925744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recanalization of obstructed cerebrospinal fluid ventricular catheters using ultrasonic cavitation.
    Ginsberg HJ; Drake JM; Peterson TM; Cobbold RS
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS403-12; discussion ONS412. PubMed ID: 17041510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system.
    Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y
    Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telemetric Intracranial Pressure Monitoring with the Raumedic Neurovent P-tel.
    Antes S; Tschan CA; Heckelmann M; Breuskin D; Oertel J
    World Neurosurg; 2016 Jul; 91():133-48. PubMed ID: 27060515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Test-Retest Reliability of Outpatient Telemetric Intracranial Pressure Measurements in Shunt-Dependent Patients with Hydrocephalus and Idiopathic Intracranial Hypertension.
    Müller SJ; Freimann FB; von der Brelie C; Rohde V; Schatlo B
    World Neurosurg; 2019 Nov; 131():e74-e80. PubMed ID: 31295619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A telemetric pressure sensor system for biomedical applications.
    Ginggen A; Tardy Y; Crivelli R; Bork T; Renaud P
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1374-81. PubMed ID: 18390328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of the anti-siphon device (ASD) on the function of various hydrocephalus drainage systems in the child].
    Gruber R; Glaser F
    Z Kinderchir; 1986 Dec; 41(6):327-34. PubMed ID: 3825299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ventriculoperitoneal shunt using a continuously variable-resistance valve for management of hydrocephalus, especially for cases mimicking simple brain atrophy].
    Kurokawa Y; Uede T; Honmou O; Ohta K; Honda O
    No Shinkei Geka; 1992 Jun; 20(6):669-75. PubMed ID: 1603274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study.
    Chapman PH; Cosman ER; Arnold MA
    Neurosurgery; 1990 Feb; 26(2):181-9. PubMed ID: 2308665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous intracranial pressure recording in adult hydrocephalus.
    Gücer G; Viernstein L; Walker AE
    Surg Neurol; 1980 May; 13(5):323-8. PubMed ID: 6992316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system.
    Kalani MY; Turner JD; Nakaji P
    J Clin Neurosci; 2013 Mar; 20(3):462-6. PubMed ID: 23380444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.