BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 4419764)

  • 1. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. 3. Effect of intermolecular forces and diffusion motion of the enzyme molecule on the rate constant.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):185-96. PubMed ID: 4419764
    [No Abstract]   [Full Text] [Related]  

  • 2. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. I. Calculation of rate constant in the case of motionless enzyme molecule without nonspecific intermolecular forces.
    Somogyi B; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1973; 8(3):153-60. PubMed ID: 4784598
    [No Abstract]   [Full Text] [Related]  

  • 3. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. II. Effect of intermolecular forces on the parameters describing the translational diffusion motion of a particle.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):175-84. PubMed ID: 4419763
    [No Abstract]   [Full Text] [Related]  

  • 4. Intermolecular ligand substitution reactions.
    Jenkins WT
    Prog Clin Biol Res; 1984; 144B():89-96. PubMed ID: 6718418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the rate of diffusion-controlled reactions of enzymes. Spatial factor and force field factor.
    Kuo-chen C; Shou-ping J
    Sci Sin; 1974 Oct; 27(5):664-80. PubMed ID: 4219062
    [No Abstract]   [Full Text] [Related]  

  • 6. Cooperativity in two-substrate reactions.
    Gol'dshtein BN; Vol'kenshtein MV
    Mol Biol; 1972 Jan; 5(4):441-9. PubMed ID: 4670414
    [No Abstract]   [Full Text] [Related]  

  • 7. Inactivation of enzymes induced by substrate: a model and some considerations.
    Silverstein R; Grisolia S
    Physiol Chem Phys; 1972; 4(1):37-40. PubMed ID: 4200720
    [No Abstract]   [Full Text] [Related]  

  • 8. Conformational dynamics of protein side chains and enzyme-substrate interaction.
    Sitnitsky AE
    J Biomol Struct Dyn; 1994 Oct; 12(2):475-86. PubMed ID: 7702781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic compartmentation in soluble enzyme systems.
    Friedrich P
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):159-73. PubMed ID: 4422122
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinetic analysis of the generalized Monod-Wyman-Changeux model.
    Kurganov BI
    Mol Biol; 1974 Sep; 8(2):193-9. PubMed ID: 4431416
    [No Abstract]   [Full Text] [Related]  

  • 11. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction systems. I. Neutral substrates.
    Li TT; Chou KC
    Sci Sin; 1976; 19(1):117-36. PubMed ID: 1273571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.
    Chen JX; Kapral R
    J Chem Phys; 2011 Jan; 134(4):044503. PubMed ID: 21280744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1976; 10(5):1116-26. PubMed ID: 1053074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter sensitivity analysis for designing experiments in kinetics.
    Kanyár B
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(3):153-60. PubMed ID: 754446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Self-oscillations in an open biochemical substrate-inhibited reaction interacting with the enzyme-producing system].
    Nazarenko VG; Sel'kov EE
    Biofizika; 1981; 26(3):428-33. PubMed ID: 7260153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetic manifestations of conformational changes in enzymes].
    Gol'dshteĭn BN; Livshits MA; Vol'kenshteĭn MV
    Mol Biol; 1974; 8(5):784-91. PubMed ID: 4469585
    [No Abstract]   [Full Text] [Related]  

  • 18. How do biomolecular systems speed up and regulate rates?
    Zhou HX
    Phys Biol; 2005 Aug; 2(3):R1-25. PubMed ID: 16224118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA.
    Gowher H; Jeltsch A
    J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subdiffusive targeting problem.
    Eaves JD; Reichman DR
    J Phys Chem B; 2008 Apr; 112(14):4283-9. PubMed ID: 18345656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.