BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 4420192)

  • 1. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
    Sparnins VL; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission.
    Dennis DA; Chapman PJ; Dagley S
    J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases.
    Sparnins VL; Dagley S
    J Bacteriol; 1975 Dec; 124(3):1374-81. PubMed ID: 1194238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of 4-hydroxy-2-ketopimelate aldolase from Acinetobacter.
    Leung PT; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):168-72. PubMed ID: 4429638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria.
    Sparnins VL; Chapman PJ
    J Bacteriol; 1976 Jul; 127(1):362-6. PubMed ID: 931949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol.
    Reiner AM
    J Bacteriol; 1971 Oct; 108(1):89-94. PubMed ID: 4399343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel pathway for degradation of protocatechuic acid in Bacillus species.
    Crawford RL
    J Bacteriol; 1975 Feb; 121(2):531-6. PubMed ID: 163224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):1121-3. PubMed ID: 5359614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli.
    Cooper RA; Skinner MA
    J Bacteriol; 1980 Jul; 143(1):302-6. PubMed ID: 6995433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of gallic acid and syringic acid by Pseudomonas putida.
    Tack BF; Chapman PJ; Dagley S
    J Biol Chem; 1972 Oct; 247(20):6438-43. PubMed ID: 4342601
    [No Abstract]   [Full Text] [Related]  

  • 14. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microbial degradation and 4-chlorophenylacetic acid. Chemical synthesis of 3-chloro-4-hydroxy-, 4-chloro-3-hydroxy- and 4-chloro-2-hydroxyphenylacetic acid (author's transl)].
    Markus A; Klages U; Lingens F
    Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):431-7. PubMed ID: 7076135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent.
    Davey JF; Gibson DT
    J Bacteriol; 1974 Sep; 119(3):923-9. PubMed ID: 4850727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3.
    Long MT; Bartholomew BA; Smith MJ; Trudgill PW; Hopper DJ
    J Bacteriol; 1997 Feb; 179(4):1044-50. PubMed ID: 9023182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolism of 3- and 4-hydroxyphenylacetic acid by Klebsiella pneumoniae.
    Martín M; Gibello A; Fernández J; Ferrer E; Garrido-Pertierra A
    J Gen Microbiol; 1991 Mar; 137(3):621-8. PubMed ID: 1851804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of homovanillate by a strain of Variovorax paradoxus via ring hydroxylation.
    Allison N; Turner JE; Wait R
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):213-9. PubMed ID: 8586270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial metabolism of pyridinium compounds. Metabolism of 4-carboxy-1-methylpyridinium chloride, a photolytic product of paraquat.
    Wright KA; Cain RB
    Biochem J; 1972 Jul; 128(3):543-59. PubMed ID: 4404506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.