These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 44203)
1. The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. Kern D; Lapointe J Biochimie; 1979; 61(11-12):1257-72. PubMed ID: 44203 [TBL] [Abstract][Full Text] [Related]
2. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Airas RK Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857 [TBL] [Abstract][Full Text] [Related]
3. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. Kern D; Potier S; Lapointe J; Boulanger Y Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402 [TBL] [Abstract][Full Text] [Related]
4. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Chinault AC; Tan KH; Hassur SM; Hecht SM Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826 [TBL] [Abstract][Full Text] [Related]
5. High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli. Harris CL J Bacteriol; 1990 Apr; 172(4):1798-803. PubMed ID: 2180904 [TBL] [Abstract][Full Text] [Related]
6. Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli. Bruton C; Jakes R; Atkinson T Eur J Biochem; 1975 Nov; 59(2):327-33. PubMed ID: 1107028 [TBL] [Abstract][Full Text] [Related]
7. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski H Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907 [TBL] [Abstract][Full Text] [Related]
8. Arginyl-tRNA synthetase from Escherichia coli, purification by affinity chromatography, properties, and steady-state kinetics. Lin SX; Shi JP; Cheng XD; Wang YL Biochemistry; 1988 Aug; 27(17):6343-8. PubMed ID: 3064807 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200 [TBL] [Abstract][Full Text] [Related]
10. Partial reactions of aminoacyl-tRNA synthetases as functions of pH. Lui M; Chakraburtty K; Mehler AH J Biol Chem; 1978 Nov; 253(22):8061-4. PubMed ID: 30773 [TBL] [Abstract][Full Text] [Related]
12. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases. Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710 [TBL] [Abstract][Full Text] [Related]
13. Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases. Zhang CM; Perona JJ; Ryu K; Francklyn C; Hou YM J Mol Biol; 2006 Aug; 361(2):300-11. PubMed ID: 16843487 [TBL] [Abstract][Full Text] [Related]
15. Aminoacyl-tRNA synthetases from an extreme thermophile, Thermus thermophilus HB8. Kohda D; Hara M; Yokoyama S; Miyazawa T Nucleic Acids Symp Ser; 1983; (12):153-4. PubMed ID: 6664850 [TBL] [Abstract][Full Text] [Related]
16. Lysyl-tRNA synthetase from Escherichia coli K12. Chromatographic heterogeneity and the lysU-gene product. Charlier J; Sanchez R Biochem J; 1987 Nov; 248(1):43-51. PubMed ID: 3325036 [TBL] [Abstract][Full Text] [Related]
17. Use of omega-aminohexyl-sepharose in the fractionation of Escherichia coli B aminoacyl-tRNA synthetases. Jakubowski H J Chromatogr; 1977 Sep; 139(2):331-6. PubMed ID: 330554 [TBL] [Abstract][Full Text] [Related]
18. Isolation and binding properties of leucyl-tRNA synthetase from Escherichia coli MRE 600. Granda S; Hustedt H; Flossdorf J; Kula MR Mol Cell Biochem; 1979 Apr; 24(3):175-81. PubMed ID: 379593 [TBL] [Abstract][Full Text] [Related]
19. Effects of adenosine triphosphate and magnesium chloride on affinity elution of aminoacyl-transfer ribonucleic acid synthetases from phosphocellulose with transfer ribonucleic acids. Yamada H J Biochem; 1978 Jun; 83(6):1577-81. PubMed ID: 353039 [TBL] [Abstract][Full Text] [Related]
20. The characterization of the RNAs and aminoacyl-tRNA synthetases of the blue-green alga, Anacystis nidulans. Beauchemin N; Larue B; Cedergren RJ Arch Biochem Biophys; 1973 May; 156(1):17-25. PubMed ID: 4199781 [No Abstract] [Full Text] [Related] [Next] [New Search]