These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 4420312)
1. Forces acting between muscle filaments. III. A mathematical computation of the resting elasticity of bee wing muscle. Garamvölgyi N; Biczó G; Eöry A; Suhai S Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):233-8. PubMed ID: 4420312 [No Abstract] [Full Text] [Related]
2. Forces acting between muscle filaments. II. A theoretical computation of the resting elasticity curve. Garamvölgyi N; Biczó G; Ladik J; Eöry A Acta Biochim Biophys Acad Sci Hung; 1973; 8(1):57-67. PubMed ID: 4784862 [No Abstract] [Full Text] [Related]
3. Direct evidence for connecting C filaments in flight muscle of honey bee. Trombitás K; Tigyi-Sebes A Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):243-53. PubMed ID: 4418455 [No Abstract] [Full Text] [Related]
4. Forces acting between muscle filaments. I. Filament lattice spacing in bee flight muscle. Garamvölgyi N Acta Biochim Biophys Acad Sci Hung; 1972; 7(2):157-64. PubMed ID: 4671913 [No Abstract] [Full Text] [Related]
5. Mechanical model of skeletal muscle. Pell KM; Stanfield JW Am J Phys Med; 1972 Feb; 51(1):23-38. PubMed ID: 5025267 [No Abstract] [Full Text] [Related]
6. The molecular trigger for high-speed wing beats in a bee. Iwamoto H; Yagi N Science; 2013 Sep; 341(6151):1243-6. PubMed ID: 23970560 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic forces as a possible mechanism underlying skeletal muscle contraction. Muñiz J; Marin JL; Yeomans L; Acuña H; Del Castillo LF; Cruz SA; Trujillo X; Huerta M Gen Physiol Biophys; 1996 Dec; 15(6):441-9. PubMed ID: 9248830 [TBL] [Abstract][Full Text] [Related]
8. Muscle. A fine time for contractual alterations. Huxley A Nature; 1992 May; 357(6374):110. PubMed ID: 1579159 [No Abstract] [Full Text] [Related]
9. [The force-excitation relation in a striated skeletal muscle fiber]. Valentini F; Nelson P C R Acad Sci III; 1984; 298(19):545-8. PubMed ID: 6088006 [TBL] [Abstract][Full Text] [Related]
10. Muscle. Support for the lever arm. Huxley AF Nature; 1998 Nov; 396(6709):317-8. PubMed ID: 9845066 [No Abstract] [Full Text] [Related]
11. X-ray diffraction studies of muscle and the crossbridge cycle. Squire JM; Knupp C Adv Protein Chem; 2005; 71():195-255. PubMed ID: 16230113 [No Abstract] [Full Text] [Related]
12. The relation of muscle biochemistry to muscle physiology. Eisenberg E; Greene LE Annu Rev Physiol; 1980; 42():293-309. PubMed ID: 6996582 [No Abstract] [Full Text] [Related]
13. Cross-bridge cycling theories and high-speed lengthening behavior in frog muscle. Morel JE Biophys J; 1991 Jul; 60(1):290-2. PubMed ID: 1883943 [No Abstract] [Full Text] [Related]
14. The Z line of the flight muscle of honey-bee. Trombitás K; Tigyi-Sebes A Acta Biochim Biophys Acad Sci Hung; 1975; 10(1-2):83-93. PubMed ID: 1146495 [TBL] [Abstract][Full Text] [Related]
15. Structural transitions in myosin and the origin of contractile force in muscle. Harrington WF; Ueno H Biopolymers; 1987; 26 Suppl():S81-98. PubMed ID: 3580502 [No Abstract] [Full Text] [Related]
17. Molecular phenomena in the contracting muscle. Krause M Acta Physiol Pol; 1972; 5():925-40. PubMed ID: 4644727 [No Abstract] [Full Text] [Related]
18. Storage and utilization of elastic energy in skeletal muscle. Cavagna GA Exerc Sport Sci Rev; 1977; 5():89-129. PubMed ID: 99306 [No Abstract] [Full Text] [Related]
19. Elastic bending and active tilting of myosin heads during muscle contraction. Dobbie I; Linari M; Piazzesi G; Reconditi M; Koubassova N; Ferenczi MA; Lombardi V; Irving M Nature; 1998 Nov; 396(6709):383-7. PubMed ID: 9845077 [TBL] [Abstract][Full Text] [Related]