These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4423215)

  • 1. Composite transport systems for iodipamide and iodohippurate out of the cerebrospinal fluid in the rat.
    Lundberg V
    Acta Physiol Scand; 1974 Oct; 92(2):204-11. PubMed ID: 4423215
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition by hippurate and probenecid of in vitro uptake of iodipamide and o-iodohippurate. A composite uptake system for iodipamide in choroid plexus, kidney cortex and anterior uvea of several species.
    Bárány EH
    Acta Physiol Scand; 1972 Sep; 86(1):12-27. PubMed ID: 4629364
    [No Abstract]   [Full Text] [Related]  

  • 3. In vitro uptake of bile acids by choroid plexus, kidney cortex and anterior uvea. I. The iodipamide-sensitive transport systems in the rabbit.
    Bárány EH
    Acta Physiol Scand; 1975 Feb; 93(2):250-68. PubMed ID: 1146574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic cation uptake in vitro by the rabbit iris-ciliary body, renal cortex, and choroid plexus.
    Bárány EH
    Invest Ophthalmol; 1976 May; 15(5):341-8. PubMed ID: 1262165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The liver-like anion transport system in rabbit kidney, uvea and choroid plexus. I. Selectivity of some inhibitors, direction of transport, possible physiological substrates.
    Bárány EH
    Acta Physiol Scand; 1973 Jul; 88(3):412-29. PubMed ID: 4751176
    [No Abstract]   [Full Text] [Related]  

  • 6. Bile acids as inhibitors of the liver-like anion transport system in the rabbit kidney, uvea and choroid plexus.
    Bárány EH
    Acta Physiol Scand; 1974 Oct; 92(2):195-203. PubMed ID: 4416985
    [No Abstract]   [Full Text] [Related]  

  • 7. A review of blood-brain barrier transport techniques.
    Smith QR
    Methods Mol Med; 2003; 89():193-208. PubMed ID: 12958421
    [No Abstract]   [Full Text] [Related]  

  • 8. Transport across the choroid plexuses in vivo and in vitro.
    Strazielle N; Preston JE
    Methods Mol Med; 2003; 89():291-304. PubMed ID: 12958428
    [No Abstract]   [Full Text] [Related]  

  • 9. Organic anion and cation transport in vitro by dog choroid plexus: effects of neuroleptics and tricyclic antidepressants.
    Bárány EH
    Acta Pharmacol Toxicol (Copenh); 1979 Feb; 44(2):146-55. PubMed ID: 32737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrospinal fluid lithium: passive transfer kinetics.
    Prockop LD; Marcus DJ
    Life Sci II; 1972 Sep; 11(17):859-68. PubMed ID: 4656886
    [No Abstract]   [Full Text] [Related]  

  • 11. Transport of sulfate and iodide from cerebrospinal fluid during ventriculocisternal perfusion and by isolated choroid plexus.
    Robinson RJ; Cutler RW; Lorenzo AV; Barlow CF
    J Neuropathol Exp Neurol; 1968 Jan; 27(1):138. PubMed ID: 5301515
    [No Abstract]   [Full Text] [Related]  

  • 12. Selectivity of probenecid congeners for different organic acid transport systrms in rabbit renal cortex.
    Bárány EH
    Acta Pharmacol Toxicol (Copenh); 1974 Oct; 35(4):309-16. PubMed ID: 4479384
    [No Abstract]   [Full Text] [Related]  

  • 13. Transport of 14C-gamma-aminobutyric acid into brain, cerebrospinal fluid and choroid plexus in neonatal and adult rats.
    Al-Sarraf H
    Brain Res Dev Brain Res; 2002 Dec; 139(2):121-9. PubMed ID: 12480126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of diphenhydramine in the central nervous system.
    Goldberg MJ; Spector R; Chiang CK
    J Pharmacol Exp Ther; 1987 Mar; 240(3):717-22. PubMed ID: 3559970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elimination of 5-hydroxyindoleacetic acid from cerebrospinal fluid: characteristics of the acid transport system of the choroid plexus.
    Sampath SS; Neff NH
    J Pharmacol Exp Ther; 1974 Feb; 188(2):410-4. PubMed ID: 4359553
    [No Abstract]   [Full Text] [Related]  

  • 16. The transport of gentamicin in the choroid plexus and cerebrospinal fluid.
    Spector R
    J Pharmacol Exp Ther; 1975 Jul; 194(1):82-8. PubMed ID: 1151757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries.
    Murphy VA; Johanson CE
    J Cereb Blood Flow Metab; 1985 Sep; 5(3):401-12. PubMed ID: 3928638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of nonelectrolytes and electrolytes in the brain as affected by alterations in cerebrospinal fluid secretion.
    Woodbury DM
    Prog Brain Res; 1968; 29():297-314. PubMed ID: 17323515
    [No Abstract]   [Full Text] [Related]  

  • 19. Selectivity of food colours for different organic acid transport systems in rat renal cortex.
    Carlson J
    Acta Pharmacol Toxicol (Copenh); 1977 Oct; 41(4):384-91. PubMed ID: 579064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of 2,4,5-trichlorophenoxyacetic acid across the blood-cerebrospinal fluid barrier of the rabbit.
    Kim CS; Pritchard JB
    J Pharmacol Exp Ther; 1993 Nov; 267(2):751-7. PubMed ID: 8246151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.