These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4425)

  • 1. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.
    Larson RJ; Pate JL
    J Bacteriol; 1976 Apr; 126(1):282-93. PubMed ID: 4425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport.
    Porter JS; Pate JL
    J Bacteriol; 1975 Jun; 122(3):976-86. PubMed ID: 238952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport in Brucella abortus.
    Rest RF; Robertson DC
    J Bacteriol; 1974 Apr; 118(1):250-8. PubMed ID: 4206873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of phenylalanine transport events by using selective inhibitors, and identification of a specific uncoupler activity in Yersinia pestis.
    Smith PB; Montie TC
    J Bacteriol; 1975 Jun; 122(3):1053-61. PubMed ID: 1150617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source of energy for gliding motility in Flexibacter polymorphus: effects of metabolic and respiratory inhibitors on gliding movement.
    Ridgway HF
    J Bacteriol; 1977 Aug; 131(2):544-56. PubMed ID: 885839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of energy to folate transport in Lactobacillus casei.
    Henderson GB; Zevely EM; Huennekens FM
    J Bacteriol; 1979 Aug; 139(2):552-9. PubMed ID: 110791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.
    Tam E; Pate JL
    J Gen Microbiol; 1985 Oct; 131(10):2687-99. PubMed ID: 4067576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symport H+/carbohydrate transport into Acholeplasma laidlawii cells.
    Tarshis MA; Kapitanov AB
    FEBS Lett; 1978 May; 89(1):73-7. PubMed ID: 26600
    [No Abstract]   [Full Text] [Related]  

  • 10. Active transport of benzoate in Pseudomonas putida.
    Thayer JR; Wheelis ML
    J Gen Microbiol; 1982 Aug; 128(8):1749-53. PubMed ID: 7142957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR; St Martin EJ
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1976 Aug; 127(2):719-30. PubMed ID: 8422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allantoin transport in Saccharomyces cerevisiae.
    Sumrada R; Cooper TG
    J Bacteriol; 1977 Sep; 131(3):839-47. PubMed ID: 19421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of the 3-o-methyl-D-glucose transport system in Acholeplasma laidlawii.
    Tarshis MA; Bekkouzjin AG; Ladygina VG; Panchenko LF
    J Bacteriol; 1976 Jan; 125(1):1-7. PubMed ID: 1368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific electron donor-energized transport of alpha-aminoisobutyric acid and K+ into intact cells of a marine pseudomonad.
    Thompson J; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1055-64. PubMed ID: 4360537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide.
    Mickelson MN
    J Bacteriol; 1977 Nov; 132(2):541-8. PubMed ID: 334746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a lysine-specific active transport system in Rickettsia prowazeki.
    Smith DK; Winkler HH
    J Bacteriol; 1977 Mar; 129(3):1349-55. PubMed ID: 403176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-associated, energy-linked reactions in Bdellovibrio bacteriovorus.
    Friedberg D; Friedberg I
    J Bacteriol; 1976 Sep; 127(3):1382-8. PubMed ID: 134028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate uptake in Thiobacillus novellus.
    Hoban DJ; Lyric RM
    Can J Microbiol; 1977 Mar; 23(3):271-7. PubMed ID: 856422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.