These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 4428)

  • 1. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.
    Patel R; Hou CT; Felix A
    J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obligate methylotrophy: evaluation of dimethyl ether as a C1 compound.
    Meyers AJ
    J Bacteriol; 1982 May; 150(2):966-8. PubMed ID: 6802804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of metal-binding and other compounds on methane oxidation by two strains of Methylococcus capsulatus.
    Stirling DI; Dalton H
    Arch Microbiol; 1977 Jul; 114(1):71-6. PubMed ID: 410382
    [No Abstract]   [Full Text] [Related]  

  • 4. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria.
    Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria.
    Barta TM; Hanson RS
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):109-20. PubMed ID: 8092853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.
    Colby J; Stirling DI; Dalton H
    Biochem J; 1977 Aug; 165(2):395-402. PubMed ID: 411486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (14C)acetate assimilation by a type I obligate methylotroph, Methylococcus capsulatus.
    Patel RN; Hoare SL; Hoare DS; Taylor BF
    Appl Environ Microbiol; 1977 Nov; 34(5):607-10. PubMed ID: 412469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the methane mono-oxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath).
    Stirling DI; Dalton H
    Eur J Biochem; 1979 May; 96(1):205-12. PubMed ID: 572296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate.
    Hyder SL; Meyers A; Cayer ML
    Tissue Cell; 1979; 11(4):597-610. PubMed ID: 118544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane.
    Strom T; Ferenci T; Quayle JR
    Biochem J; 1974 Dec; 144(3):465-76. PubMed ID: 4377654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N
    Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of dimethyl nitrosamine by Methylosinus trichosporium OB3b.
    Yoshinari T; Shafer D
    Can J Microbiol; 1990 Dec; 36(12):834-8. PubMed ID: 2127906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b.
    Tsien HC; Brusseau GA; Hanson RS; Waclett LP
    Appl Environ Microbiol; 1989 Dec; 55(12):3155-61. PubMed ID: 2515801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetics of methane oxidation.
    Murrell JC
    Biodegradation; 1994 Dec; 5(3-4):145-59. PubMed ID: 7765830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus.
    Patel RN; Hoare DS
    J Bacteriol; 1971 Jul; 107(1):187-92. PubMed ID: 5563868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria.
    Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N
    Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential role of ferrous iron in cyanide-resistant respiration in Hansenula anomala.
    Minagawa N; Sakajo S; Komiyama T; Yoshimoto A
    FEBS Lett; 1990 Jul; 267(1):114-6. PubMed ID: 2114321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis.
    Lidstrom ME; Wopat AE
    Arch Microbiol; 1984 Nov; 140(1):27-33. PubMed ID: 6442554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath.
    Choi DW; Antholine WE; Do YS; Semrau JD; Kisting CJ; Kunz RC; Campbell D; Rao V; Hartsel SC; DiSpirito AA
    Microbiology (Reading); 2005 Oct; 151(Pt 10):3417-3426. PubMed ID: 16207923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon source regulation of gene expression in Methylosinus trichosporium OB3b.
    Farhan Ul Haque M; Gu W; Baral BS; DiSpirito AA; Semrau JD
    Appl Microbiol Biotechnol; 2017 May; 101(9):3871-3879. PubMed ID: 28108763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.