These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 4429734)
1. The effects of 3-methylcholanthrene and phenobarbital induction on the structure of the rat liver endoplasmic reticulum. Welton AF; Aust SD Biochim Biophys Acta; 1974 Dec; 373(2):197-210. PubMed ID: 4429734 [No Abstract] [Full Text] [Related]
2. Effects of phenobarbital, 3-methylcholanthrene, and hematin on the synthesis of protein components of rat liver microsomal membranes. Dehlinger PJ; Schimke RT J Biol Chem; 1972 Feb; 247(4):1257-64. PubMed ID: 5010068 [No Abstract] [Full Text] [Related]
3. Gel electrophoresis of partially purified cytochromes P450 from liver microsomes of variously-treated rats. Alvares AP; Siekevitz P Biochem Biophys Res Commun; 1973 Oct; 54(3):923-9. PubMed ID: 4201810 [No Abstract] [Full Text] [Related]
4. [Antioxidants as cytochrome stabilizers in endoplasmic reticulum membranes of rat liver in vivo]. Beriia VP; Kagan VE; Arkhipenko IuV; Kozlov IuP Biofizika; 1975; 20(2):238-40. PubMed ID: 1148297 [TBL] [Abstract][Full Text] [Related]
5. The differentiation of rat liver endoplasmic reticulum membranes: apo--cytochrome P450 as a membrane protein. Siekevitz P J Supramol Struct; 1973; 1(6):471-89. PubMed ID: 4782060 [No Abstract] [Full Text] [Related]
6. SDS-polyacylamide gel electrophoresis of hepatic cytochrome P-450 from normal, 3-methylcholanthrene and phenobarbital treated mice. Bell DY; Hodgson E Gen Pharmacol; 1977; 8(2):121-7. PubMed ID: 598676 [No Abstract] [Full Text] [Related]
7. Characterization of microsomal electron transport components from control, phenobarbital- and 3-methylcholanthrene-treated mice. II. Improved resolution and quantitation of major components in ammonium sulfate fractions from total liver microsomes. Mull RH; Schgaguler M; Mönig H; Voigt T; Flemming K Biochim Biophys Acta; 1977 Dec; 462(3):671-88. PubMed ID: 202308 [TBL] [Abstract][Full Text] [Related]
8. Characterization of microsomal electron transport components from control, phenobarbital, and 3-methylcholanthrene treated mice: I. Distribution of electron transport components in ammonium-sulfate fractions from mouse liver microsomes. Mull RH; Voigt T; Flemming K Biochem Biophys Res Commun; 1975 Jan; 64(3):1098-106. PubMed ID: 807209 [No Abstract] [Full Text] [Related]
9. Multiplicity of cytochrome P450 hemoproteins in rat liver microsomes. Welton AF; Aust SD Biochem Biophys Res Commun; 1974 Feb; 56(4):898-906. PubMed ID: 4133181 [No Abstract] [Full Text] [Related]
10. Multiplicity of cytochrome P-450 hemoproteins in rat liver microsomes. Preparation and specificity of an antibody to the hemoprotein induced by phenobarbital. Welton AF; O'Neal FO; Chaney LC; Aust SD J Biol Chem; 1975 Jul; 250(14):5631-9. PubMed ID: 806594 [TBL] [Abstract][Full Text] [Related]
11. Effects of phenobarbital, 3-methylcholanthrene, and griseofulvin on the O-demethylation of griseofulvin by liver microsomes of rats and mice. Lin C; Chang R; Casmer C; Symchowicz S Drug Metab Dispos; 1973; 1(4):611-8. PubMed ID: 4149634 [No Abstract] [Full Text] [Related]
12. Characterization of microsomal electron transport components from control, phenobarbital and 3-methylcholanthrene treated mice: II. Resolution and quantitation of cytochromes P-450 and P1-450 and the so-called "factor X" in SDS-polyacrylamide gels of total microsomes. Mull RH; Schgaguler M; Flemming K Biochem Biophys Res Commun; 1975 Dec; 67(3):849-56. PubMed ID: 1201075 [No Abstract] [Full Text] [Related]
13. Characterization of partially purified cytochromes P-450 and P-448 from rat liver microsomes. Lu AY; West SB; Ryan D; Levin W Drug Metab Dispos; 1973; 1(1):29-39. PubMed ID: 4149398 [No Abstract] [Full Text] [Related]
14. Immunochemical evidence for two 3-methylcholanthrene-inducible forms of cytochrome P-448 in rat liver microsomes using a double-antibody radioimmunoassay procedure. Luster MI; Lawson LD; Linko P; Goldstein JA Mol Pharmacol; 1983 Jan; 23(1):252-7. PubMed ID: 6408389 [TBL] [Abstract][Full Text] [Related]
15. Binding of polysomes in vitro with endoplasmic membrane prepared from rat liver. II. Possible involvement of cytochrome P-450 in the binding. Takagi M J Biochem; 1977 Oct; 82(4):1077-84. PubMed ID: 924982 [No Abstract] [Full Text] [Related]
16. Subfractionation of rat liver microsomes: effects of phenobarbital and 3-methyl cholanthrene. Murphy PJ; Van Frank RM; Williams TL Biochem Biophys Res Commun; 1969 Nov; 37(4):697-704. PubMed ID: 5353897 [No Abstract] [Full Text] [Related]
17. Species differences in the induction of microsomal hemoproteins and 3,4-benzpyrene hydroxylase by phenobarbital and 3-methylcholanthrene. Alvares AP; Schilling G; Levin W J Pharmacol Exp Ther; 1970 Oct; 175(1):4-11. PubMed ID: 5471452 [No Abstract] [Full Text] [Related]
18. The effect of 3-amino-1,2,4-triazole on the phenobarbtial-induced formation of hepatic microsomal membranes. Raisfeld IH; Bacchin P; Hutterer F; Schaffner F Mol Pharmacol; 1970 May; 6(3):231-9. PubMed ID: 5443529 [No Abstract] [Full Text] [Related]
19. Effects of phenobarbital and 3-methylcholanthrene on substrate specificity of rat liver microsomal UDP-glucuronyltransferase. Bock KW; Fröhling W; Remmer H; Rexer B Biochim Biophys Acta; 1973 Nov; 327(1):46-56. PubMed ID: 4203741 [No Abstract] [Full Text] [Related]
20. Effects of phenobarbital and 3-methylcholanthrene on amino acid incorporation into rat liver chromosomal proteins. Blankenship J; Kuehl L Mol Pharmacol; 1973 Mar; 9(2):247-58. PubMed ID: 4711701 [No Abstract] [Full Text] [Related] [Next] [New Search]