These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 4429770)
1. Bending resistance and chemically induced moments in membrane bilayers. Evans EA Biophys J; 1974 Dec; 14(12):923-31. PubMed ID: 4429770 [TBL] [Abstract][Full Text] [Related]
2. Interaction between bending and tension forces in bilayer membranes. Secomb TW Biophys J; 1988 Oct; 54(4):743-6. PubMed ID: 3224154 [TBL] [Abstract][Full Text] [Related]
3. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Evans EA Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275 [TBL] [Abstract][Full Text] [Related]
6. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Thompson TE; Tillack TW Annu Rev Biophys Biophys Chem; 1985; 14():361-86. PubMed ID: 2988578 [TBL] [Abstract][Full Text] [Related]
7. Interaction between inclusions embedded in membranes. Aranda-Espinoza H; Berman A; Dan N; Pincus P; Safran S Biophys J; 1996 Aug; 71(2):648-56. PubMed ID: 8842204 [TBL] [Abstract][Full Text] [Related]
8. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation. Evans E; Buxbaum K Biophys J; 1981 Apr; 34(1):1-12. PubMed ID: 7213927 [TBL] [Abstract][Full Text] [Related]
9. The elastic deformability of closed multilayered membranes is the same as that of a bilayer membrane. Svetina S; Zeks B Eur Biophys J; 1992; 21(4):251-5. PubMed ID: 1425478 [TBL] [Abstract][Full Text] [Related]
10. Energetics of pore formation induced by membrane active peptides. Lee MT; Chen FY; Huang HW Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629 [TBL] [Abstract][Full Text] [Related]
11. Curvature Softening and Negative Compressibility of Gel-Phase Lipid Membranes. Diggins P; McDargh ZA; Deserno M J Am Chem Soc; 2015 Oct; 137(40):12752-5. PubMed ID: 26413857 [TBL] [Abstract][Full Text] [Related]
13. Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model. Hömberg M; Müller M J Chem Phys; 2010 Apr; 132(15):155104. PubMed ID: 20423201 [TBL] [Abstract][Full Text] [Related]
14. Asymmetric charge distributions in planar bilayer systems. McQuarrie DA; Mulás P Biophys J; 1977 Feb; 17(2):103-9. PubMed ID: 836930 [TBL] [Abstract][Full Text] [Related]
15. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Chiu SW; Clark M; Balaji V; Subramaniam S; Scott HL; Jakobsson E Biophys J; 1995 Oct; 69(4):1230-45. PubMed ID: 8534794 [TBL] [Abstract][Full Text] [Related]
16. Resting shape and spontaneous membrane curvature of red blood cells. Pozrikidis C Math Med Biol; 2005 Mar; 22(1):34-52. PubMed ID: 15716299 [TBL] [Abstract][Full Text] [Related]
17. Bending stiffness of lipid bilayers: IV. Interpretation of red cell shape change. Fischer TM Biophys J; 1993 Aug; 65(2):687-92. PubMed ID: 8218896 [TBL] [Abstract][Full Text] [Related]
18. Elastic area compressibility modulus of red cell membrane. Evans EA; Waugh R; Melnik L Biophys J; 1976 Jun; 16(6):585-95. PubMed ID: 1276386 [TBL] [Abstract][Full Text] [Related]
19. Surface tension effect on transmembrane channel stability in a model membrane. Zhu Q; Vaughn MW J Phys Chem B; 2005 Oct; 109(41):19474-83. PubMed ID: 16853516 [TBL] [Abstract][Full Text] [Related]
20. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]