These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 4429790)
1. Conformational change of the triple-helical structure. II. Conformation of (Pro-Pro-Gly)n and (Pro-Pro-Gly)n (Ala-Pro-Gly)m(Pro-Pro-Pro-Gly)n in an aqueous solution. Suto K; Noda H Biopolymers; 1974 Nov; 13(11):2391-404. PubMed ID: 4429790 [No Abstract] [Full Text] [Related]
2. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034 [TBL] [Abstract][Full Text] [Related]
3. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides]. Abagyan RA; Tumanian VG; Esipova NG Bioorg Khim; 1984 Apr; 10(4):476-82. PubMed ID: 6548632 [TBL] [Abstract][Full Text] [Related]
4. The energy of formation of internal loops in triple-helical collagen polypeptides. Paterlini MG; Némethy G; Scheraga HA Biopolymers; 1995 Jun; 35(6):607-19. PubMed ID: 7766826 [TBL] [Abstract][Full Text] [Related]
5. Conformational change of the triple-helical structure. IV. Kinetics of the helix-folding of (Pro-Pro-Gly)n (n equals 10, 12, and 15). Suto K; Noda H Biopolymers; 1974 Dec; 13(12):2477-88. PubMed ID: 4441606 [No Abstract] [Full Text] [Related]
6. Conformational studies on sequential polypeptides. Part VII. Structural investigations on (Pro-Phe-Gly)n and (Phe-Pro-Gly)n. Tamburro AM; Scatturin A; Del Pra A Int J Pept Protein Res; 1977; 9(5):310-8. PubMed ID: 892992 [TBL] [Abstract][Full Text] [Related]
7. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. Bella J; Liu J; Kramer R; Brodsky B; Berman HM J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298 [TBL] [Abstract][Full Text] [Related]
8. Sequence-specific liquid crystallinity of collagen model peptides. I. Transmission electron microscopy studies of interfacial collagen gels. Valluzzi R; Kaplan DL Biopolymers; 2000 Apr; 53(4):350-62. PubMed ID: 10685055 [TBL] [Abstract][Full Text] [Related]
9. Conformational studies on sequential polypeptides. Part V. Synthesis and characterization of (Pro-Leu-Gly)10, (Pro-LeuqGly)n and (Leu-Pro-Gly)n. Scatturin A; Tamburro AM; Vidali G; Bordignon E Int J Pept Protein Res; 1975; 7(3):221-8. PubMed ID: 1158560 [TBL] [Abstract][Full Text] [Related]
10. Structural consequences of D-amino acids in collagen triple-helical peptides. Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768 [TBL] [Abstract][Full Text] [Related]
11. Coacervation of sequential polypeptide models of tropoelastin. Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H-(Val-Pro-Gly-Gly)n-Val-OMe. Rapaka RS; Urry DW Int J Pept Protein Res; 1978 Feb; 11(2):97-108. PubMed ID: 640777 [TBL] [Abstract][Full Text] [Related]
12. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Shah NK; Ramshaw JA; Kirkpatrick A; Shah C; Brodsky B Biochemistry; 1996 Aug; 35(32):10262-8. PubMed ID: 8756681 [TBL] [Abstract][Full Text] [Related]
13. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot. Barth D; Musiol HJ; Schütt M; Fiori S; Milbradt AG; Renner C; Moroder L Chemistry; 2003 Aug; 9(15):3692-702. PubMed ID: 12898696 [TBL] [Abstract][Full Text] [Related]
14. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion. Khew ST; Tong YW Biochemistry; 2008 Jan; 47(2):585-96. PubMed ID: 18154308 [TBL] [Abstract][Full Text] [Related]
15. Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): synthesis and biophysical studies of Gly-Nleu-Pro sequences by circular dichroism and optical rotation. Feng Y; Melacini G; Goodman M Biochemistry; 1997 Jul; 36(29):8716-24. PubMed ID: 9220958 [TBL] [Abstract][Full Text] [Related]
16. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations. Stultz CM Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical analysis of (Pro-Pro-Gly)n with defined molecular weight--temperature dependence of molecular weight in aqueous solution. Kobayashi Y; Sakai R; Kakiuchi K; Isemura T Biopolymers; 1970; 9(4):415-25. PubMed ID: 5436168 [No Abstract] [Full Text] [Related]
18. Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): conformational analysis of Gly-Nleu-Pro sequences by 1H-NMR and molecular modeling. Melacini G; Feng Y; Goodman M Biochemistry; 1997 Jul; 36(29):8725-32. PubMed ID: 9220959 [TBL] [Abstract][Full Text] [Related]
19. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403 [TBL] [Abstract][Full Text] [Related]
20. [A test for the structure of the left helix of poly-L-proline type II in peptides]. Esipova NG; Lobachev VM; Rogulenkova VN; Makarov AA; Shibnev VA Mol Biol (Mosk); 1984; 18(3):725-35. PubMed ID: 6472271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]